精讲01 折叠问题【中考满分冲刺之几何变换】2022年中考数学一轮复习精讲精练 课件+教案(共39张PPT)(广东专用)

文档属性

名称 精讲01 折叠问题【中考满分冲刺之几何变换】2022年中考数学一轮复习精讲精练 课件+教案(共39张PPT)(广东专用)
格式 zip
文件大小 5.8MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2022-03-02 23:00:01

文档简介

(共39张PPT)
Add Text
点击此处添加标题
2022中考满分系列精讲
几何变换问题
几何变换,又称空间变换,是图形处理的一个方面,是各种图形处理算法的基础。此外几何变换也是深度学习中数据增强的一种常用方法。在实际应用当中有着极其重要的作用.
具体地,在初等数学当中几何变换是一种重要的数学解题的方法思路。在几何的解题中,当题目给出的条件显得不够或者不明显时,我们可以将图形作一定的变换,这样将有利于发现问题的隐含条件,使问题得以突破。
本专辑将从平移,旋转,轴对称(翻折),相似变换,位似变换中探索解题的奥秘,力争从一个侧面突破中考满分的瓶颈。
一、 双基目标
本节主要学习-各类折叠问题的解法.
细分三种类型
①简单的线段、角、面积计算问题;
②落点与存在性问题;
③动点轨迹问题;
二、能力目标
随着教育教学改革的深入发展,现代数学思想也随之不断渗透,几何变换以运动变换的观点研究几何问题,体现了“形”与“数”的知识融合,把复杂性问题转化为简单性的问题而得到解决,对于学生运用几何变换的思想分析、解决问题的能力,逐渐成为中考考查热点、重点,其中的数学思想业已越来越引起人们的重视和关注。
一、折叠专题
(2021贵州毕节)如图,在矩形纸片ABCD中,AB=7,BC=9,M是BC上的点,且CM=2.将矩形纸片ABCD沿过点M的直线折叠,使点D落在AB上的点P处,点C落在点C′处,折痕为MN,则线段PA的长是(  )
A.4 B.5 C.6 D.2√5
【分析】一般性的折叠求线段问题通常用三步即可解决:
①设适当的未知数;②借助勾股定理或相似建立方程;③解方程。【解析】连接PM,设AP=x,可得出PB=7﹣x,BM=7,根据折叠的性质可得CD=PC′=7,CM=C′M=2,在Rt△PBM中和Rt△PC′M中,根据勾股定理PB2+BM2=PM2,PM2=(7﹣x)2+72,C′P2+C′M2=PM2,PM2=72+22,因为PM是公共边,所以可得PM=PM,即(7﹣x)2+72=72+22,求出x的值即可得出答案.
(2021海南)如图,在矩形ABCD中,AB=6,AD=8,将此矩形折叠,使点C与点A重合,点D落在点D′处,折痕为EF,则AD′的长为    ,DD′的长为 . 
【分析】根据折叠的性质即可求得AD′=CD=6;连接AC,根据勾股定理求得AC=10,证得△BAE≌△D′AF(AAS),D′F=BE,根据勾股定理列出关于线段BE的方程,解方程求得BE的长,即可求得 = ,然后通过证得 =
,根据△AEC∽△D/FD的性质即可求得DD′= .
(2021山东泰安)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=2,则AD的长为   。
【分析】证明Rt△EBF≌Rt△EB′D(HL),推出BF=DB′,再证明DB′=EC=BF=2,由二次折叠可得BF=FG,四边形ABEB/是正方形.∴△AGF是等腰直角三角形且FG=2,∴AF=√2FG=2√2.∴AD=4+2√2
(2021浙江丽水)如图,在Rt△ABC纸片中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC上,连结DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD平分∠EFB,则AD的长为(  )
【分析】由翻折得出AD=DF,∠A=∠DFE,再根据FD平分∠EFB,得出∠DFB=∠A,∴DF⊥AB,设AD=DF=x,则DB=5-x,∵tan∠A=BC:AC=3:4,且∠A=∠DFB.∴DB:DF=3:4,从而求出x= .
(2020山东滨州)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF;把纸片展平后再次折叠,使点A落在EF上的点A/处,得到折痕BM,BM与FF相交于点N.若直线B A’交直线CD于点O,BC=5,EN=1,则OD的长为( )
【分析】
本题的关键是从两次折叠当中发现在Rt△A/EB中,BE= A/B,从而找到∠EA/B=30°,进一步推导出∠EBN=30°
利用EN=1,求出BE=√3,AB=CD=2√3,然后在Rt△BOC中,借助三角函数求出OC,从而得到OD.
(2020衢州)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为(  )
【答案】A
(2021湖南湘西)如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=20°,则∠2的度数是   .
【分析】利用平行线的性质以及翻折不变性即可得到∠1=∠3=∠4=20°,进而得出∠2=40°.
40°
(2021重庆A卷)如图,三角形纸片ABC中,点D,E,F分别在边AB,AC,BC上,BF=4,CF=6,将这张纸片沿直线DE翻折,点A与点F重合.若DE∥BC,AF=EF,则四边形ADFE的面积为  .
【分析】由沿直线DE翻折,点A与点F重合可知:DE垂直平分AF,因为DE∥BC,所以DE为△ABC的中位线,DE= BC=5;由折叠可得AE=EF,因为AF=EF,可得△AEF为等边三角形,∠FAC=60°;在Rt△AFC中,解直角三角形可得AF的长,四边形ADFE的面积为 DE×AF,结论可得.【答案】5√3
二、落点、存在性专题
【解题策略】
一定一动一线长
画个圆圈来帮忙
相似勾股造方程
(2021河南)小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为   .
【分析】由题意可知,以点C为圆心,CD为半径画圆分别与另两边各有一个交点,所以本题分两种情形解答:①点D′恰好落在直角三角形纸片的AB边上时;【答案】A′D′=2-√3
②点D′恰好落在直角三角形纸片的BC边上时,【答案】
(2019年河南). 如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE= a.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为 .
【分析】分两种情况:①点B′落在AD边上,根据矩形与折叠的性质易得AB=BE,即可求出a的值;②点B′落在CD边上,证明△ADB′∽△B′CE,根据相似三角形对应边成比例即可求出a的值.
题后反思:
本题属于“折叠问题”当中的“落点”存在性问题. 解题方法:
①先画图,确定落点位置(以A为圆心,AB长为半径画圆);
②依据图形特征选取适当的计算模型来解决.
常用的计算模型:勾股定理建方程;“一线三垂直”相似求线段
(2014河南)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为  .
【分析】利用圆规首先画出折点D的运动轨迹,然后做出∠ABC的平分线,其交点即是D/,因为点D/处为直角,所以构造“三垂直相似”,接着设出DE=x,利用相似建方程解答即可.【答案】
(2018河南)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交所在直线于点F,连接.当△A′EF为直角三角形时,AB的长为________.
【分析】当△A′EF为直角三角形时,存在两种情况:
①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2AC=8,最后利用勾股定理可得AB的长;
②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.
题后反思:
本题属于“折叠问题”当中的“直角”存在性问题. 解题方法:
①先画图,确定落点位置(以A为圆心,AB长为半径画圆);
②在射线AN上截取点B,过点B作已知圆的切线,确定点A/的位置
适当连接即可;④依据图形特征选取适当的计算模型来解决.
常用的计算模型:勾股定理建方程;“一线三垂直”相似求线段
归纳总结
对比上述“落点”和“直角”存在性问题可以发现它们解法上的区别与联系
1、画图是关键:
①一个是以关键定点为圆心,定长为半径画圆,找到关键交点;
②另一个是以关键定点为圆心,定长为半径画圆,然后做切线的方式构造直角三角形
2、常用的计算模型比较类似:勾股定理建方程;“一线三垂直”相似求线段
(2013河南)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为   .
【分析】当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形对角线上时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【答案】
(2020辽宁沈阳)如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为 . 
【关键提示】:本题关键是画出正确的图形。然后再深入分析图形的特征,采取相应恰当的计算模型解答。正确的画图是以动点P为圆心,动长PA为半径画圆,并且作出动直线PO的垂线交圆与点E.至此图形基本完成,接下来就是在AD边上滑动点P作出符合题意的图形。
【分析】分两种情况讨论,(1)当∠DPF=90°时,过点O作OH⊥AD于H,由平行线分线段成比例可得OH= AB=3,HD= AD=4,由折叠的性质可得∠APO=∠EPO=45°,可求OH=HP=3,可得PD=1;
(2)当∠PFD=90°时,由勾股定理和矩形的性质可得OA=OC=OB=OD=5,通过证明△OFE∽△BAD,可得 ,可求OF的长,通过证明△PFD∽△BAD,可得,可求PD的长.
(2015河南)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为   .
【分析】根据等腰三角形存在性的一般性原理,本题由三种可能性.通过验证其中以定点C为圆心作等腰不成立.另外,图(1)是以D为圆心,CD为半径构造的,∴DB/=16;图(2)是通过作CD的垂直平分线构造的,利用勾股定理可求出DB/=4√5
题后反思:
本题属于“折叠问题”当中的“等腰”存在性问题. 解题方法:
①先画图,确定折点位置轨迹(以E为圆心,EB长为半径画圆);

依据图形特征选取适当的计算模型来解决.
常用的计算模型:勾股定理建方程;“一线三垂直”相似求线段
(2021江苏盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=  时,△AEC′是以AE为腰的等腰三角形.
 
【分析】本题虽属于“等腰”存在性问题,不过因为不确定点较多,不适合画圆找点的方法。可通过分类讨论计算的代数方法解答.
【解析】设BE=x,则EC=4﹣x,由翻折得:EC′=EC=4﹣x.当AE=EC′时,由勾股定理得:32+x2=(4﹣x)2;当AE=AC’时,作AH⊥EC’,由∠AEF=90°,EF平方∠CEC′可证得∠AEB=∠AEH,则△ABE≌△AHE,所以BE=HE=x,由三线合一得EC′=2EH,即4﹣x=2x,解方程即可.【答案】
(2018本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为   .
【分析】如图,图1中,OD=DP时,由勾股定理可求出AP=4,∴P(8,4).
图2中,OP=PD 时,观察可知 【 答案】
(2021江苏无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2√2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=  .
【分析】如图,连接BG,BE由题意可证明△ABE≌△FGE,以及△BEG∽△AEF.想求出AF,需要找到相似比和BG的长度。依据AE=1结合全等可求出EG=3,所以相似比是3:1,BG=2√6,从而得到AF.【答案】
(2021常州)如图,在Rt△ABC中,∠ACB=90°,∠CBA=30°,AC=1,D是AB上一点(点D与点A不重合).若在Rt△ABC的直角边上存在4个不同的点分别和点A、D成为直角三角形的三个顶点,则AD长的取值范围是 。  
【分析】如图,当以AD为直径画圆,圆与两个直角边有三个交点时符合题意;
若圆刚好过点C,此时就仅有一个;若圆与边BC恰好相切时也仅能作三个.所以AD的取值范围就在后两种情况之间.【答案】
(2018乌鲁木齐)如图,在Rt△ABC中,∠C=90°,BC=2√3,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为  .
 
【提示】如图,依据动态观察可以发现共有两种情况:
①∠AFB/=90°;②∠AB/F=90°(此时AB/与圆相切).
【分析】如上图,∵BC=2√3,AC=2,∴AB=4.并且∠ABC=30°
①当∠AFB/=90°时,此时AB⊥DB/且平分它;
∵BD=B/D=√3,∴B/F=DF =√3/2,∴BF=3/2。AF=5/2.
在Rt△DEF中,由∠EDF=30°,可得EF=1/2.∴此时AE=3
②如下图,作EH⊥AH,当∠AB/F=90°时,此时∠AB/E=120°,∴∠EB/H=60°,
∠HEB/=30°,设AE=x,则BE=4-x=B/E,
∴EH=√3(4-x),HB/ =(4-x)/2,
由勾股定理可求出AB/的长度,在R t△AEH中,利用勾股定理建立方程可
求出x=
【答案】AE=3或
三、动点轨迹专题
(2020 嘉兴)如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为  cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为  cm.
【分析】第一个问题证明BM=MB′=NB′,求出NB即可解决问题.【答案】√5
【分析】如下图,探究点E的运动轨迹,寻找特殊位置解决问题即可.
(2020广西北部湾)如图,在边长为2√3的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为 . 
【分析】如图,作△CBD的外接圆⊙O,连接OB,OD.利用全等三角形的性质证明∠DPB=120°,推出B,C,D,P四点共圆,利用弧长公式计算即可.【答案】
题后反思:
同一平面内的四个点在同一个圆上,则这四个点共圆,简称“四点共圆”。四点共圆有三个常用的性质:
(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;
(2)共圆的4个点构成的内接四边形对角互补;
(3)圆内接四边形的外角等于内对角
(2018达州)如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为  .
【分析】过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长2√2.
(2019·贵州贵阳)如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是  .
【分析】当F与A点重合时和F与C重合时,根据E的位置,可知E的运动路径是EE'的长;由已知条件可以推导出△DEE'是直角三角形,且∠DEE'=30°,在Rt△ADE'中,求出DE'= ,即可求解.几何变换系列精讲一 折叠问题
一、 双基目标
本节主要学习-各类折叠问题的解法.
细分三种类型
①简单的线段、角、面积计算问题;
②落点与存在性问题;
③动点轨迹问题;
二、能力目标
随着教育教学改革的深入发展,现代数学思想也随之不断渗透,几何变换以运动变换的观点研究几何问题,体现了“形”与“数”的知识融合,把复杂性问题转化为简单性的问题而得到解决,对于学生运用几何变换的思想分析、解决问题的能力,逐渐成为中考考查热点、重点,其中的数学思想业已越来越引起人们的重视和关注。
1、看课件,复习知识体系和基本方法;
2、学习例题,完成变式练习;
3、完成课后练习,巩固基础,提升能力。
【例1】(2021贵州毕节)如图,在矩形纸片ABCD中,AB=7,BC=9,M是BC上的点,且CM=2.将矩形纸片ABCD沿过点M的直线折叠,使点D落在AB上的点P处,点C落在点C′处,折痕为MN,则线段PA的长是(  )
A.4 B.5 C.6 D.2
【分析】连接PM,设AP=x,可得出PB=7﹣x,BM=7,根据折叠的性质可得CD=PC′=7,CM=C′M=2,在Rt△PBM中和Rt△PC′M中,根据勾股定理PB2+BM2=PM2,PM2=(7﹣x)2+72,C′P2+C′M2=PM2,PM2=72+22,因为PM是公共边,所以可得PM=PM,即(7﹣x)2+72=72+22,求出x的值即可得出答案.
【解答】解:连接PM,如图,
设AP=x,
∵AB=7,CM=2,
∴PB=7﹣x,BM=BC﹣CM=7,
由折叠性质可知,
CD=PC′=7,CM=C′M=2,
在Rt△PBM中,
PB2+BM2=PM2,
PM2=(7﹣x)2+72,
在Rt△PC′M中,
C′P2+C′M2=PM2,
PM2=72+22,
∴(7﹣x)2+72=72+22,
解得:x=5,
∴AP=5.
故选:B.
【点评】本题主要考查了翻折变化、矩形的性质及勾股定理,熟练应用翻折变化的性质及矩形的性质进行计算是解决本题的关键.
【例2】(2021海南)如图,在矩形ABCD中,AB=6,AD=8,将此矩形折叠,使点C与点A重合,点D落在点D′处,折痕为EF,则AD′的长为  6 ,DD′的长为   .
【分析】根据折叠的性质即可求得AD′=CD=6;连接AC,根据勾股定理求得AC=10,证得△BAE≌△D′AF(AAS),D′F=BE,根据勾股定理列出关于线段BE的方程,解方程求得BE的长,即可求得=,然后通过证得=,根据相似三角形的性质即可求得DD′.
【解答】解:∵四边形ABCD是矩形,
∴CD=AB=6,
∵AD′=CD,
∴AD′=6;
连接AC,
∵AB=6,BC=AD=8,∠ABC=90°,
∴AC===10,
∵∠BAF=∠D′AE=90°,
∴∠BAE=∠D′AF,
在△BAE和△D′AF中

∴△BAE≌△D′AF(AAS),
∴D′F=BE,∠AEB=∠AFD′,
∴∠AEC=∠D′FD,
由题意知:AE=EC;
设BE=x,则AE=EC=8﹣x,
由勾股定理得:
(8﹣x)2=62+x2,
解得:x=,
∴BE=,AE=8﹣=,
∴=,
∴=,
∵∠AD′F=∠D′AF=90°,
∴D′F∥AE,
∵DF∥EC,
∴=,
∴==,
∴DD′=×10=,
故答案为6,.
【点评】该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、相似三角形的性质,勾股定理等几何知识点来解题.
【例3】(2021山东泰安)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=2,则AD的长为  4+2 .
【分析】证明Rt△EBF≌Rt△EB′D(HL),推出BF=DB′,再证明DB′=EC=BF=2,想办法求出AB′,可得结论.
【解答】解:由翻折的性质可知,EB=EB′,∠B=∠AB′E=∠EB′D=90°,
在Rt△EBF和Rt△EB′D中,

∴Rt△EBF≌Rt△EB′D(HL),
∴BF=DB′,
∵四边形ABCD是矩形,
∴∠C=∠CDB′=∠EB′D=90°,
∴四边形ECDB′是矩形,
∴DB′=EC=2,
∴BF=EC=2,
由翻折的性质可知,BF=FG=2,∠FAG=45°,∠EGF=∠B=∠AGF=90°,
∴AG=FG=2,
∴AF=2.
∴AB=AB′=2+2,
∴AD=AB′+DB′=4+2,
故答案为:4+2.
【点评】本题考查翻折变换,矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
【例4】(2021浙江丽水)如图,在Rt△ABC纸片中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC上,连结DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD平分∠EFB,则AD的长为(  )
A. B. C. D.
【分析】由翻折得出AD=DF,∠A=∠DFE,再根据FD平分∠EFB,得出∠DFH=∠A,然后借助相似列出方程即可.
【解答】解:作DH⊥BC于H,
在Rt△ABC纸片中,∠ACB=90°,
由勾股定理得:AB=,
∵将△ADE沿DE翻折得△DEF,
∴AD=DF,∠A=∠DFE,
∵FD平分∠EFB,
∴∠DFE=∠DFH,
∴∠DFH=∠A,
设DH=3x,
在Rt△DHF中,sin∠DFH=sin∠A=,
∴DF=5x,
∴BD=5﹣5x,
∵△BDH∽△BAC,
∴,
∴,
∴x=,
∴AD=5x=.
故选:D.
【点评】本题考查了以直角三角形为背景的翻折问题,紧扣翻折前后对应线段相等、对应角相等来解决问题,通过相似表示线段和列方程是解题本题的关键.
【例5】(2020山东滨州)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF;把纸片展平后再次折叠,使点A落在EF上的点A/处,得到折痕BM,BM与FF相交于点N.若直线B A’交直线CD于点O,BC=5,EN=1,则OD的长为( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.
【详解】
解:∵EN=1,
∴由中位线定理得AM=2,
由折叠的性质可得A′M=2,
∵AD∥EF,
∴∠AMB=∠A′NM,
∵∠AMB=∠A′MB,
∴∠A′NM=∠A′MB,
∴A′N=2,
∴A′E=3,A′F=2
过M点作MG⊥EF于G,
∴NG=EN=1,
∴A′G=1,
由勾股定理得MG= ,
∴BE=DF=MG= ,
∴OF:BE=2:3,
解得OF=,
∴OD=-=.
故选:B.
【例6】(2020衢州)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为(  )
A. B. C. D.
【答案】A
【例7】(2021湖南湘西)如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=20°,则∠2的度数是  40° .
【分析】利用平行线的性质以及翻折不变性即可得到∠1=∠3=∠4=20°,进而得出∠2=40°.
【解答】解:如图
分别延长EB、DB到F,G,
由于纸带对边平行,
∴∠1=∠4=20°,
∵纸带翻折,
∴∠3=∠4=20°,
∴∠DBF=∠3+∠4=40°,
∵CD∥BE,
∴∠2=∠DBF=40°.
故答案为:40°.
【点评】本题考查平行线的判定和性质和折叠的性质,解题的关键是熟练掌握:两直线平行;内错角相等.
【例8】(2021重庆A卷)如图,三角形纸片ABC中,点D,E,F分别在边AB,AC,BC上,BF=4,CF=6,将这张纸片沿直线DE翻折,点A与点F重合.若DE∥BC,AF=EF,则四边形ADFE的面积为 5 .
【分析】由沿直线DE翻折,点A与点F重合可知:DE垂直平分AF,因为DE∥BC,所以DE为△ABC的中位线,DE=BC=5;由折叠可得AE=EF,因为AF=EF,可得△AEF为等边三角形,∠FAC=60°;在Rt△AFC中,解直角三角形可得AF的长,四边形ADFE的面积为DE×AF,结论可得.
【解答】解:∵纸片沿直线DE翻折,点A与点F重合,
∴DE垂直平分AF.
∴AD=DF,AE=EF.
∵DE∥BC,
∴DE为△ABC的中位线.
∴DE=BC=(BF+CF)=(4+6)=5.
∵AF=EF,
∴△AEF为等边三角形.
∴∠FAC=60°.
在Rt△AFC中,
∵tan∠FAC=,
∴AF==2.
∴四边形ADFE的面积为:DE×AF=×5×2=5.
故答案为:5.
【点评】本题主要考查了折叠问题,三角形的中位线,平行线的性质,三角形的面积,解直角三角形.利用中点的性质得到对应的部分相等是解题的关键.
【例1】(2021河南)小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为   或 2﹣ .
【分析】分两种情形解答:①点D′恰好落在直角三角形纸片的AB边上时,由题意:△ADC≌△A′DC≌△A′D′C,则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1;A′C垂直平分线段DD′;利用,可求得CE,则A′E=A′C﹣CE,解直角三角形A′D′E可求线段A′D′;②点D′恰好落在直角三角形纸片的BC边上时,由题意:△ADC≌△A′DC≌△A′D′C,则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1,∠ACD=∠A′CD=∠A′CD′=∠ACB=30°;在Rt△A′D′C中,利用30°所对的直角边等于斜边的一半可得结论.
【解答】解:①点D′恰好落在直角三角形纸片的AB边上时,设A′C交AB边于点E,如图,
由题意:△ADC≌△A′DC≌△A′D′C,A′C垂直平分线段DD′.
则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.
∵∠ACB=90°,∠B=30°,AC=1,
∴BC=AC tanA=1×tan60°=.
AB=2AC=2,
∵,
∴CE=.
∴A′E=A′C﹣CE=1﹣.
在Rt△A′D′E中,
∵cos∠D′A′E=,
∴,
∴A′D′=2A′E=2﹣.
②点D′恰好落在直角三角形纸片的BC边上时,如图,
由题意:△ADC≌△A′DC≌△A′D′C,∠ACD=∠A′CD=∠A′CD′=∠ACB=30°;
则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.
∵∠D′A′C=60°,∠A′CD′=30°,
∴∠A′D′C=90°,
∴A′D′=′C=.
综上,线段A′D′的长为: 或 2﹣.
故答案为: 或 2﹣.
【点评】本题主要考查了翻折问题,含30°角的直角三角形,直角三角形的边角关系,特殊角的三角函数值,全等三角形的性质.翻折属于全等变换,对应部分相等,这是解题的关键,当点D′恰好落在直角三角形纸片的边上时,要注意分类讨论.
【例2】(2019河南)如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为 或 .
【分析】分两种情况:①点B′落在AD边上,根据矩形与折叠的性质易得AB=BE,即可求出a的值;②点B′落在CD边上,证明△ADB′∽△B′CE,根据相似三角形对应边成比例即可求出a的值.
【解答】解:分两种情况:
①当点B′落在AD边上时,如图1.
∵四边形ABCD是矩形,
∴∠BAD=∠B=90°,
∵将△ABE沿AE折叠,点B的对应点B′落在AD边上,
∴∠BAE=∠B′AE=∠BAD=45°,
∴AB=BE,
∴a=1,
∴a=;
②当点B′落在CD边上时,如图2.
∵四边形ABCD是矩形,
∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a.
∵将△ABE沿AE折叠,点B的对应点B′落在CD边上,
∴∠B=∠AB′E=90°,AB=AB′=1,EB=EB′=a,
∴DB′==,EC=BC﹣BE=a﹣a=a.
在△ADB′与△B′CE中,

∴△ADB′∽△B′CE,
∴=,即=,
解得a1=,a2=﹣(舍去).
综上,所求a的值为或.
故答案为或.
【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,勾股定理,相似三角形的判定与性质.进行分类讨论与数形结合是解题的关键.
【例3】(2018河南)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为 4或4 .
【分析】当△A′EF为直角三角形时,存在两种情况:
①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;
②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.
【解答】解:当△A′EF为直角三角形时,存在两种情况:
①当∠A'EF=90°时,如图1,
∵△A′BC与△ABC关于BC所在直线对称,
∴A'C=AC=4,∠ACB=∠A'CB,
∵点D,E分别为AC,BC的中点,
∴D、E是△ABC的中位线,
∴DE∥AB,
∴∠CDE=∠MAN=90°,
∴∠CDE=∠A'EF,
∴AC∥A'E,
∴∠ACB=∠A'EC,
∴∠A'CB=∠A'EC,
∴A'C=A'E=4,
Rt△A'CB中,∵E是斜边BC的中点,
∴BC=2A'E=8,
由勾股定理得:AB2=BC2﹣AC2,
∴AB==4;
②当∠A'FE=90°时,如图2,
∵∠ADF=∠A=∠DFB=90°,
∴∠ABF=90°,
∵△A′BC与△ABC关于BC所在直线对称,
∴∠ABC=∠CBA'=45°,
∴△ABC是等腰直角三角形,
∴AB=AC=4;
综上所述,AB的长为4或4;
故答案为:4或4;
【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.
【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.
【例4】(2014河南)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为 或 .
【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.
【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P
∵点D的对应点D′落在∠ABC的角平分线上,
∴MD′=PD′,
设MD′=x,则PD′=BM=x,
∴AM=AB﹣BM=7﹣x,
又折叠图形可得AD=AD′=5,
∴x2+(7﹣x)2=25,解得x=3或4,
即MD′=3或4.
在Rt△END′中,设ED′=a,
①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,
∴a2=22+(4﹣a)2,
解得a=,即DE=,
②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,
∴a2=12+(3﹣a)2,
解得a=,即DE=.
故答案为:或.
【点评】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.
【例5】(2013河南)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为 或3 .
【分析】当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【解答】解:当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=3,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=3,
∴CB′=5﹣3=2,
设BE=x,则EB′=x,CE=4﹣x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4﹣x)2,解得x=,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=3.
综上所述,BE的长为或3.
故答案为:或3.
【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.
【例6】(2020辽宁沈阳)如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为 或1 .
【分析】分两种情况讨论,当∠DPF=90°时,过点O作OH⊥AD于H,由平行线分线段成比例可得OH=AB=3,HD=AD=4,由折叠的性质可得∠APO=∠EPO=45°,可求OH=HP=3,可得PD=1;当∠PFD=90°时,由勾股定理和矩形的性质可得OA=OC=OB=OD=5,通过证明△OFE∽△BAD,可得,可求OF的长,通过证明△PFD∽△BAD,可得,可求PD的长.
【解答】解:如图1,当∠DPF=90°时,过点O作OH⊥AD于H,
∵四边形ABCD是矩形,
∴BO=OD,∠BAD=90°=∠OHD,AD=BC=8,
∴OH∥AB,
∴,
∴OH=AB=3,HD=AD=4,
∵将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F,
∴∠APO=∠EPO=45°,
又∵OH⊥AD,
∴∠OPH=∠HOP=45°,
∴OH=HP=3,
∴PD=HD﹣HP=1;
当∠PFD=90°时,
∵AB=6,BC=8,
∴BD===10,
∵四边形ABCD是矩形,
∴OA=OC=OB=OD=5,
∴∠DAO=∠ODA,
∵将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F,
∴AO=EO=5,∠PEO=∠DAO=∠ADO,
又∵∠OFE=∠BAD=90°,
∴△OFE∽△BAD,
∴,
∴,
∴OF=3,
∴DF=2,
∵∠PFD=∠BAD,∠PDF=∠ADB,
∴△PFD∽△BAD,
∴,
∴,
∴PD=,
综上所述:PD=或1,
故答案为或1.
【例7】(2015河南)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为 16或4 .
【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.
【解答】解:(i)当B′D=B′C时,
过B′点作GH∥AD,则∠B′GE=90°,
当B′C=B′D时,AG=DH=DC=8,
由AE=3,AB=16,得BE=13.
由翻折的性质,得B′E=BE=13.
∴EG=AG﹣AE=8﹣3=5,
∴B′G===12,
∴B′H=GH﹣B′G=16﹣12=4,
∴DB′===4
(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).
(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.
综上所述,DB′的长为16或4.
故答案为:16或4.
【例8】(2021江苏盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE= 或 时,△AEC′是以AE为腰的等腰三角形.
【分析】设BE=x,则EC=4﹣x,由翻折得:EC′=EC=4﹣x.当AE=EC′时,由勾股定理得:32+x2=(4﹣x)2;当AE=AC’时,作AH⊥EC’,由∠AEF=90°,EF平方∠CEC′可证得∠AEB=∠AEH,则△ABE≌△AHE,所以BE=HE=x,由三线合一得EC′=2EH,即4﹣x=2x,解方程即可.
【解答】解:设BE=x,则EC=4﹣x,
由翻折得:EC′=EC=4﹣x,当AE=EC′时,AE=4﹣x,
∵矩形ABCD,
∴∠B=90°,
由勾股定理得:32+x2=(4﹣x)2,
解得:,
当AE=AC′时,如图,作AH⊥EC′
∵EF⊥AE,
∴∠AEF=∠AEC′+∠FEC′=90°,
∴∠BEA+∠FEC=90°,
∵△ECF沿EF翻折得△ECF,
∴∠FEC′=∠FEC,
∴∠AEB=∠AEH,
∵∠B=∠AHE=90°,AH=AH,
∴△ABE≌△AHE(AAS),
∴BE=HE=x,
∵AE=AC′时,作AH⊥EC′,
∴EC′=2EH,
即4﹣x=2x,
解得,
综上所述:BE=或.
故答案为:或.
【点评】本题考查了矩形的性质、等腰三角形的性质、勾股定理等知识点,涉及到方程思想和分类讨论思想.当AE=AC′时如何列方程,有一定难度.
【例9】(2018本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为   .
解:∵四边形OABC是矩形,B(8,7),
∴OA=BC=8,OC=AB=7,
∵D(5,0),
∴OD=5,
∵点P是边AB或边BC上的一点,
∴当点P在AB边时,OD=DP=5,
∵AD=3,
∴PA==4,
∴P(8,4).
当点P在边BC上时,只有PO=PD,此时P(,7).
综上所述,满足条件的点P坐标为(8,4)或(,7).
故答案为(8,4)或(,7).
【例10】(2021常州)如图,在Rt△ABC中,∠ACB=90°,∠CBA=30°,AC=1,D是AB上一点(点D与点A不重合).若在Rt△ABC的直角边上存在4个不同的点分别和点A、D成为直角三角形的三个顶点,则AD长的取值范围是  <AD<2 .
【分析】设Rt△ABC的直角边上存在点E,使以点A,点D,点E为顶点的三角形是直角三角形,需要分情况讨论,当点D是直角顶点时,过点D作AB的垂线;当点E是直角顶点时,点E是以AD长为直径的圆与直角边的交点,当此圆与直角边BC相切时,为临界状态,此时这样的点有2个,当此圆过点C时,也为临界状态,点D和点B重合,不符合题意.
【解答】解:在Rt△ABC中,∠ACB=90°,∠CBA=30°,AC=1,
∴AB=2,
设Rt△ABC的直角边上存在点E,使以点A,点D,点E为顶点的三角形是直角三角形,
①当点D是直角顶点时,过点D作AB的垂线;②当点E是直角顶点时,点E是以AD长为直径的圆与直角边的交点,
如图所示,当此圆与直角边有3个交点时,符合题意;
当以AD为直径的圆与BC相切时,如图所示,
设圆的半径为r,即AF=DF=EF=r,
∵EF⊥BC,∠B=30°,
∴BF=2EF=2r,
∴r+2r=2,解得r=;
∴AD=2r=;
综上,AD的长的取值范围为:<AD<2.
故答案为:<AD<2.
【点评】本题主要考查含30°角的直角三角形,直角三角形的存在性,数形结合思想,分类讨论思想等内容;找到临界状态即以AD为直径的圆与BC相切,是本题解题关键.
【例11】(2018乌鲁木齐)如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为 3或 .
【分析】利用三角函数的定义得到∠B=30°,AB=4,再利用折叠的性质得DB=DC=,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,讨论:当∠AFB′=90°时,则∴BF=cos30°=,则EF=﹣(4﹣x)=x﹣,于是在Rt△B′EF中利用EB′=2EF得到4﹣x=2(x﹣),解方程求出x得到此时AE的长;当∠FB′A=90°时,作EH⊥AB′于H,连接AD,如图,证明Rt△ADB′≌Rt△ADC得到AB′=AC=2,再计算出∠EB′H=60°,则B′H=(4﹣x),EH=(4﹣x),接着利用勾股定理得到(4﹣x)2+[(4﹣x)+2]2=x2,方程求出x得到此时AE的长.
【解答】解:∵∠C=90°,BC=2,AC=2,
∴tanB===,
∴∠B=30°,
∴AB=2AC=4,
∵点D是BC的中点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F
∴DB=DC=,EB′=EB,∠DB′E=∠B=30°,
设AE=x,则BE=4﹣x,EB′=4﹣x,
当∠AFB′=90°时,
在Rt△BDF中,cosB=,
∴BF=cos30°=,
∴EF=﹣(4﹣x)=x﹣,
在Rt△B′EF中,∵∠EB′F=30°,
∴EB′=2EF,
即4﹣x=2(x﹣),解得x=3,此时AE为3;
当∠FB′A=90°时,作EH⊥AB′于H,连接AD,如图,
∵DC=DB′,AD=AD,
∴Rt△ADB′≌Rt△ADC,
∴AB′=AC=2,
∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,
∴∠EB′H=60°,
在Rt△EHB′中,B′H=B′E=(4﹣x),EH=B′H=(4﹣x),
在Rt△AEH中,∵EH2+AH2=AE2,
∴(4﹣x)2+[(4﹣x)+2]2=x2,解得x=,此时AE为.
综上所述,AE的长为3或.
故答案为3或.
【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了含30度的直角三角形三边的关系和勾股定理.
【例1】(2020 嘉兴)如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为  cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为 () cm.
【分析】第一个问题证明BM=MB′=NB′,求出NB即可解决问题.第二个问题,探究点E的运动轨迹,寻找特殊位置解决问题即可.
【解答】解:如图1中,
∵四边形ABCD是矩形,
∴AB∥CD,
∴∠1=∠3,
由翻折的性质可知:∠1=∠2,BM=MB′,
∴∠2=∠3,
∴MB′=NB′,
∵NB′(cm),
∴BM=NB′(cm).
如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,
在Rt△ADE中,则有x2=22+(4﹣x)2,解得x,
∴DE=4(cm),
如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5﹣1﹣2=2(cm),
如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5﹣1(4)(cm),
∴【答案】点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=22﹣(4=()(cm).
故答案为,().
【点评】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.
【例2】(2020广西北部湾)(隐圆问题)如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为 π .
【分析】如图,作△CBD的外接圆⊙O,连接OB,OD.利用全等三角形的性质证明∠DPB=120°,推出B,C,D,P四点共圆,利用弧长公式计算即可.
【解答】解:如图,作△CBD的外接圆⊙O,连接OB,OD,
∵四边形ABCD是菱形,
∴∠A=∠C=60°,AB=BC=CD=AD,
∴△ABD,△BCD都是等边三角形,
∴BD=AD,∠BDF=∠DAE,
∵DF=AE,
∴△BDF≌△DAE(SAS),
∴∠DBF=∠ADE,
∵∠ADE+∠BDE=60°,
∴∠DBF+∠BDP=60°,
∴∠BPD=120°,
∵∠C=60°,
∴∠C+∠DPB=180°,
∴B,C,D,P四点共圆,
由BC=CD=BD=2,可得OB=OD=2,
∵∠BOD=2∠C=120°,
∴点P的运动的路径的长==π.
故答案为π.
【例3】(2018达州)如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为 2 .
【分析】过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.
【解答】解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,
∵△AOP为等腰直角三角形,
∴OA=OP,∠AOP=90°,
易得四边形OECF为矩形,
∴∠EOF=90°,CE=CF,
∴∠AOE=∠POF,
∴△OAE≌△OPF,
∴AE=PF,OE=OF,
∴CO平分∠ACP,
∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,
∵AE=PF,
即AC﹣CE=CF﹣CP,
而CE=CF,
∴CE=(AC+CP),
∴OC=CE=(AC+CP),
当AC=2,CP=CD=1时,OC=×(2+1)=,
当AC=2,CP=CB=5时,OC=×(2+5)=,
∴当P从点D出发运动至点B停止时,点O的运动路径长=﹣=2.
故答案为2.
【点评】本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.
【例4】(2019·贵州贵阳)如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是  .
【分析】当F与A点重合时和F与C重合时,根据E的位置,可知E的运动路径是EE'的长;由已知条件可以推导出△DEE'是直角三角形,且∠DEE'=30°,在Rt△ADE'中,求出DE'=即可求解.
【解答】解:E的运动路径是EE'的长;
∵AB=4,∠DCA=30°,
∴BC=,
当F与A点重合时,
在Rt△ADE'中,AD=,∠DAE'=30°,∠ADE'=60°,
∴DE'=,∠CDE'=30°,
当F与C重合时,∠EDC=60°,
∴∠EDE'=90°,∠DEE'=30°,
在Rt△DEE'中,EE'=;
故答案为.
【点评】本题考查点的轨迹;能够根据E点的运动情况,分析出E点的运动轨迹是线段,在30度角的直角三角形中求解是关键.
中小学教育资源及组卷应用平台
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
几何变换系列精讲一 折叠问题
一、 双基目标
本节主要学习-各类折叠问题的解法.
细分三种类型
①简单的线段、角、面积计算问题;
②落点与存在性问题;
③动点轨迹问题;
二、能力目标
随着教育教学改革的深入发展,现代数学 ( http: / / www.21cnjy.com )思想也随之不断渗透,几何变换以运动变换的观点研究几何问题,体现了“形”与“数”的知识融合,把复杂性问题转化为简单性的问题而得到解决,对于学生运用几何变换的思想分析、解决问题的能力,逐渐成为中考考查热点、重点,其中的数学思想业已越来越引起人们的重视和关注。
1、看课件,复习知识体系和基本方法;
2、学习例题,完成变式练习;
3、完成课后练习,巩固基础,提升能力。
【例1】(2021贵州毕节)如图,在矩 ( http: / / www.21cnjy.com )形纸片ABCD中,AB=7,BC=9,M是BC上的点,且CM=2.将矩形纸片ABCD沿过点M的直线折叠,使点D落在AB上的点P处,点C落在点C′处,折痕为MN,则线段PA的长是(  )
( http: / / www.21cnjy.com / )
A.4 B.5 C.6 D.2
【例2】(2021海南)如图,在矩形AB ( http: / / www.21cnjy.com )CD中,AB=6,AD=8,将此矩形折叠,使点C与点A重合,点D落在点D′处,折痕为EF,则AD′的长为   ,DD′的长为   .21世纪教育网版权所有
( http: / / www.21cnjy.com / )
【例3】(2021山东泰 ( http: / / www.21cnjy.com )安)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=2,则AD的长为   .21cnjy.com
( http: / / www.21cnjy.com / )
【例4】(2021浙江丽水)如图, ( http: / / www.21cnjy.com )在Rt△ABC纸片中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC上,连结DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD平分∠EFB,则AD的长为(  )
( http: / / www.21cnjy.com / )
A. B. C. D.
【例5】(2020山东滨州 ( http: / / www.21cnjy.com ))如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF;把纸片展平后再次折叠,使点A落在EF上的点A/处,得到折痕BM,BM与FF相交于点N.若直线B A’交直线CD于点O,BC=5,EN=1,则OD的长为( )2·1·c·n·j·y
( http: / / www.21cnjy.com / )
A. B. C. D.
【例6】(2020衢州)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为(  )
( http: / / www.21cnjy.com / )
A. B. C. D.
【例7】(2021湖南湘西) ( http: / / www.21cnjy.com )如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=20°,则∠2的度数是   .
( http: / / www.21cnjy.com / )
【例8】(2021重庆A卷) ( http: / / www.21cnjy.com )如图,三角形纸片ABC中,点D,E,F分别在边AB,AC,BC上,BF=4,CF=6,将这张纸片沿直线DE翻折,点A与点F重合.若DE∥BC,AF=EF,则四边形ADFE的面积为  .
( http: / / www.21cnjy.com / )
【例1】(2021河南)小华用 ( http: / / www.21cnjy.com )一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为    .21教育网
( http: / / www.21cnjy.com / )
【例2】(2019河南)如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为  .【来源:21·世纪·教育·网】
( http: / / www.21cnjy.com / )
【例3】(2018河南)如图,∠M ( http: / / www.21cnjy.com )AN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为  .21·世纪*教育网
( http: / / www.21cnjy.com / )
【例4】(2014河南)如图矩形ABCD ( http: / / www.21cnjy.com )中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为  .www-2-1-cnjy-com
( http: / / www.21cnjy.com / )
【例5】(2013河南)如图,矩形ABC ( http: / / www.21cnjy.com )D中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为  .21*cnjy*com
( http: / / www.21cnjy.com / )
【例6】(2020辽宁沈阳)如图,在矩形AB ( http: / / www.21cnjy.com )CD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为  .2-1-c-n-j-y
( http: / / www.21cnjy.com / )
【例7】(2015河南)如图 ( http: / / www.21cnjy.com ),正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为  .
( http: / / www.21cnjy.com / )
【例8】(2021江苏盐 ( http: / / www.21cnjy.com )城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=  时,△AEC′是以AE为腰的等腰三角形.www.21-cn-jy.com
( http: / / www.21cnjy.com / )
【例9】(2018本溪)如图,矩形OABC ( http: / / www.21cnjy.com )的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为   .【来源:21cnj*y.co*m】
( http: / / www.21cnjy.com / )
【例10】(2021常州) ( http: / / www.21cnjy.com )如图,在Rt△ABC中,∠ACB=90°,∠CBA=30°,AC=1,D是AB上一点(点D与点A不重合).若在Rt△ABC的直角边上存在4个不同的点分别和点A、D成为直角三角形的三个顶点,则AD长的取值范围是   .【出处:21教育名师】
( http: / / www.21cnjy.com / )
【例11】(2018乌鲁木齐)如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为  .
( http: / / www.21cnjy.com / )
( http: / / www.21cnjy.com / )
【例1】(2020 嘉兴) ( http: / / www.21cnjy.com )如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为  cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为  cm.21·cn·jy·com
( http: / / www.21cnjy.com / )
【例2】(2020广西北部湾)(隐圆问题)18.(3分)如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为  .
( http: / / www.21cnjy.com / )
【例3】(2018达州) ( http: / / www.21cnjy.com )如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为  .【版权所有:21教育】
( http: / / www.21cnjy.com / )
【例4】(2019·贵州 ( http: / / www.21cnjy.com )贵阳)如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是  .21教育名师原创作品
( http: / / www.21cnjy.com / )
专题一 线段、角、面积计算问题
专题二 落点与存在性问题
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录