八年级数学下册第20章数据的初步分析难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示是根据某地某月10天的每天最高气温绘成的折线统计图,那么这段时间该地最高气温的平均数、众数、中位数依次是( )
A.4,5,4 B.4.5,5,4.5 C.4,5,4.5 D.4.5,5,4
2、某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:
册数/册 1 2 3 4 5
人数/人 2 5 7 4 2
根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( )
A.3,3 B.3,7 C.2,7 D.7,3
3、某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是( )
A.8 B.13 C.14 D.15
4、新型冠状病毒肺炎(CoronaVriusDisease2019,COVID﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是( )
A.2 B.11.1% C.18 D.
5、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是( )
A.0.6 B.6 C.0.4 D.4
6、已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是( )
A.90 B.90.3 C.91 D.92
7、已知一组数据﹣1,2,0,1,﹣2,那么这组数据的方差是( )
A.10 B.4 C.2 D.0.2
8、垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试.考试规定成绩大于等于96分为优异,两个班成绩的平均数、中位数、方差如表所示,则下列说法正确的是( )
参加人数 平均数 中位数 方差
甲 40 95 93 5.1
乙 40 95 95 4.6
A.甲班的成绩比乙班的成绩稳定
B.甲班成绩优异的人数比乙班多
C.甲,乙两班竞褰成绩的众数相同
D.小明得94分将排在甲班的前20名
9、请根据“2021年全运会金牌前十排行榜”判断,金牌数这一组数据的中位数为( )
排名 1 2 3 4 5 6 7 8 9 10
代表团 山东 广东 浙江 江苏 上海 湖北 福建 湖南 四川 辽宁
金牌数
A.36 B.27
C.35.5 D.31.5
10、在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是( )
A.乙同学的成绩更稳定 B.甲同学的成绩更稳定
C.甲、乙两位同学的成绩一样稳定 D.不能确定哪位同学的成绩更稳定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某学习小组的6名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、80分、74分,则众数是 _____分.
2、小明上学期数学平时成绩、期中成绩、期末成绩分别为93分、87分、90分,若将平时成绩、期中成绩、期末成绩按3:3:4的比例计算综合得分,则小明上学期数学综合得分为_____分.
3、小玲家的鱼塘里养了2 500条鲢鱼,按经验,鲢鱼的成活率约为80%.现准备打捞出售,为了估计鱼塘中鲢鱼的总质量,从鱼塘中捕捞了3次进行统计,得到的数据如下表:
鱼的条数 平均每条鱼的质量
第一次捕捞 20
第二次捕捞 10
第三次捕捞 10
那么,鱼塘中鲢鱼的总质量约是________kg.
4、若一组数据85、x、80、90、95的平均数为85,则x的值为________.
5、某选手在比赛中的成绩(单位:分)分别是90,87,92,88,93,方差是5.2(单位:分2),如果去掉一个最高分和一个最低分,那么该选手成绩的方差会_____(填“变大”、“变小”、“不变”或“不能确定”).
三、解答题(5小题,每小题10分,共计50分)
1、为了了解某校学生的身高情况随机抽取该校男生,女生进行抽样调查,已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表.身高情况分组表(单位:cm)
组别 身高
A x<160
B 160≤x<165
C 165≤x<170
D 170≤x<175
E x≥175
根据图表提供的信息,回答下列问题:
(1)样本中,男生的身高众数在 组,中位数在 组.
(2)样本中,女生身高在E组的人数有 人.
(3)已知该校共有男生600人,女生480人,请估计身高在165≤x<175之间的学生约有多少.
2、教育局为了了解初三男生引体向上的成绩情况,随机抽测了本区部分学校初三男生,并将测试成绩绘成了如下两幅不完整的统计图.
请你根据图中的信息,解答下列问题:
(1)写出扇形图中 ,并补全条形图;
(2)在这次抽测中,测试成绩的众数和中位数分别是 个, 个;
(3)该区初三年级共有男生2400人,如果引体向上达6个以上(含6个)得满分,请你估计该区男生的引体向上成绩能获得满分的有多少名?
3、抗美援朝战争是新中国的立国之战,中国人民志愿军打破了美军不可战胜的神话.电影《长津湖》将这一段波澜壮阔的历史重新带进了人们的视野,并一举拿下了国庆档的票房冠军,激发了大家的爱国热情.因此,某校开展了抗美援朝专题知识竞赛,所有同学得分都不低于80分,现从该校八、九年级中各抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x(分)表示,共分成四个等级,A:80≤x<85;B:85≤x<90;C:90≤x<95;D:95≤x<100),下面给出了部分信息:
八年级抽取的学生C等级的成绩为:92,92,93,94
九年级抽取的学生D等级的成绩为:95,95,95,97,100
八,九年级抽取的学生竞赛成绩统计表:
年级 平均分 中位数 众数 方差
八年级 92 a 92 23.4
九年级 92 94 b 29.8
请根据相关信息,回答以下问题:
(1)填空:a= ,b= ,并补全九年级抽取的学生竞赛成绩条形统计图;
(2)根据以上数据,请判断哪个年级的同学竞赛成绩更好,并说明理由(一条即可);
(3)规定成绩在95分以上(含95分)的同学被评为优秀,已知该校八年级共有1200人参加知识竞赛,请计算该校八年级约有多少名同学被评为优秀?
4、为庆祝中国共产党建党100周年,某中学组织七、八年级全体学生开展了“党史知识”竞赛活动,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分).
收集数据:
七年级:90,95,95,80,85,90,80,90,85,100;
八年级:85,85,95,80,95,90,90,90,100,90.
整理数据:
80 85 90 95 100
七年级 2 2 3 2 1
八年级 1 2 4 a 1
分析数据:
平均数 中位数 众数 方差
七年级 89 90 e
八年级 c 90 d 30
根据以上信息回答下列问题:
(1)请直接写出表格中a,b,c,d的值;
(2)通过计算求出e的值;
(3)通过数据分析,你认为哪个年级的成绩比较好?说明理由;
(4)该校七八年级共1600人,本次竞赛成绩不低于90分的为“优秀”,估计这两个年级共多少名学生达到“优秀”?
5、为了强身健体,更好的学习和生活,某学校初二年级600名同学积极跑步,体育陈老师为整个年级同学进行了跑步测试.为了解同学整体跑步能力,从中抽取部分同学的成绩(得分取正整数,满分为100分)进行统计分析,得到如下所示的频数分布表:
分数段 50.5﹣60.5 60.5﹣70.5 70.5﹣80.5 80.5﹣90.5 90.5﹣100.5
频数 18 30 50 a 22
所占百分比 9% 15% 25% b% c
请根据尚未完成的表格,解答下列问题:
(1)本次抽样调查的样本容量为 ,表中c= ;
(2)补全如图所示的频数分布直方图;
(3)若成绩小于或者等于70分的同学的跑步能力需加强锻炼和提高,估计该校八年级同学中需要加强锻炼和提高的有 人.
-参考答案-
一、单选题
1、C
【分析】
根据平均数的计算公式、众数的定义、中位数的定义解答.
【详解】
解:平均数=,
数据有小到大排列为1、2、2、4、4、5、5、5、6、6,
则这组数据的众数为5,中位数为,
故选:C.
【点睛】
此题考查平均数的计算公式,众数的定义、中位数的定义,熟记公式及各定义是解题的关键.
2、A
【分析】
根据众数、中位数的定义解答.
【详解】
解:读书册数的众数是3;第10个数据是3,第11个数据是3,故中位数是3,
故选:A.
【点睛】
此题考查了统计中的众数和中位数的定义,数据定义并应用是解题的关键.
3、C
【分析】
根据众数的定义:一组数据中出现次数最多的那个数,称为这组数据的众数,据此结合条形图可得答案.
【详解】
解:由条形统计图知14岁出现的次数最多,
所以这些队员年龄的众数为14岁,
故选C.
【点睛】
本题考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义.
4、A
【分析】
根据CoronaVriusDisease中共有18个字母,其中r出现2次可得答案.
【详解】
解:CoronaVriusDisease中共有18个字母,其中r出现2次,
∴频数是2,
故选A.
【点睛】
本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数.
5、C
【分析】
先求出反面朝上的频数,然后根据频率=频数÷总数求解即可
【详解】
解:∵小明抛一枚硬币100次,其中有60次正面朝上,
∴小明抛一枚硬币100次,其中有40次反面朝上,
∴反面朝上的频率=40÷100=0.4,
故选C.
【点睛】
本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.
6、D
【分析】
根据加权平均数计算.
【详解】
解:小明的平均成绩为分,
故选:D.
【点睛】
此题考查了加权平均数,正确掌握各权重的意义及计算公式是解题的关键.
7、C
【分析】
根据方差公式进行计算即可.方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差.
【详解】
﹣1,2,0,1,﹣2,这组数据的平均数为
故选C
【点睛】
本题考查了求一组数据的方差,掌握方差的计算公式是解题的关键.
8、D
【分析】
分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可.
【详解】
A.乙班成绩的方差小于甲班成绩的方差,所以乙班成绩稳定,此选项错误,不符合题意;
B.乙班成绩的中位数大于甲班,所以乙班成绩不低于95分的人数多于甲班,此选项错误,不符合题意;
C.根据表中数据无法判断甲、乙两班成绩的众数,此选项错误,不符合题意;
D.因为甲班共有40名同学,甲班的中位数是93分,所以小明得94分将排在甲班的前20名,此选项正确,符合题意;
故选:D.
【点睛】
本题考查了平均数、中位数、方差及众数的概念,平均数、中位数及众数反映的是一组数据的平均趋势及水平,平均数与每个数据有关;方差反映的是一组数据的波动程度,在平均数相同的情况下,方差越小,说明数据的波动程度越小,也就是说这组数据更稳定.
9、D
【分析】
根据中位数定义解答.将这组数据从小到大的顺序排列,第5、6个数的平均数为中位数.
【详解】
解:将这组数据从小到大的顺序排列处于中间位置的数即第5名和第6名的金牌数是36、27,
那么由中位数的定义可知,这组数据的中位数是.
故选D.
【点睛】
本题为统计题,考查中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
10、A
【分析】
根据方差的定义逐项排查即可.
【详解】
解:∵甲同学成绩的方差2>乙同学成绩的方差1.8,且平均成绩一样
∴乙同学的成绩更稳定.
故选A.
【点睛】
本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定.
二、填空题
1、94
【分析】
根据众数的定义直接解答即可.
【详解】
解:∵94分出现了2次,出现的次数最多,
∴众数是94分.
故答案为:94.
【点睛】
本题考查了众数的定义.众数是一组数据中出现次数最多的数据,注意:众数可以不止一个.
2、90
【分析】
由题意直接根据加权平均数的计算方法列式进行计算即可得解.
【详解】
解:
=
=
=90(分).
故小明上学期数学综合得分为90分.
故答案为:90.
【点睛】
本题考查加权平均数的求法,要注意乘以各自的权,直接相加除以3是错误的求法.
3、3600
【分析】
首先计算样本平均数,然后计算成活的鱼的数量,最后两个值相乘即可.
【详解】
解:每条鱼的平均重量为:千克,
成活的鱼的总数为:条,
则总质量约是千克.
故答案为:3600.
【点睛】
本题考查了利用样本估计总体,解题的关键是注意样本平均数的计算方法:总质量总条数,能够根据样本估算总体.
4、75
【分析】
只要运用求平均数公式即可求出.
【详解】
由题意知,(85+x+80+90+95)=85,
解得x=75.
故填75.
【点睛】
本题考查了平均数的概念.熟记公式是解决本题的关键.
5、变小
【分析】
求出去掉一个最高分和一个最低分后的数据的方差,通过方差大小比较,即可得出答案.
【详解】
去掉一个最高分和一个最低分后为88,90,92,
平均数为
方差为
∵5.2>2.67,
∴去掉一个最高分和一个最低分后,方差变小了,
故答案为:变小.
【点睛】
本题考查了方差、算数平均数的知识;解题的关键是熟练掌握方差的性质,从而完成求解.
三、解答题
1、(1)B,C;(2)2;(3)462人.
【分析】
(1)根据众数出现次数最多,以及中位数为排列后中间的数据或中间两个数的平均数解答即可;
(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;
(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.
【详解】
解:(1)∵直方图中,B组的人数为12,最多,
∴男生的身高的众数在B组,
男生总人数为:4+12+10+8+6=40,
按照从低到高的顺序,第20、21两人都在C组,
∴男生的身高的中位数在C组,
故答案为:B,C;
(2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,
∵抽取的样本中,男生、女生的人数相同,
∴样本中,女生身高在E组的人数有:40×5%=2(人),
故答案为:2;
(3)600×+480×(25%+15%)=270+192=462(人).
答:该校身高在165≤x<175之间的学生约有462人.
【点睛】
本题考查的是频数分布直方图以及扇形统计图的应用,掌握用样本估计总体的方法、正确读懂扇形图的信息、理解中位数和众数的概念是解题的关键.
2、(1)25%,补全的条形图见解析;(2)5,5;(3)该区引体向上的男生能获得满分的有1080名.
【分析】
(1)根据扇形统计图可以求得a的值,根据扇形统计图和条形统计图可以得到做6个的学生数,从而可以将条形图;
(2)根据(1)中补全的条形图可以得到众数和中位数;
(3)根据统计图可以估计该区体育中考中选报引体向上的男生能获得满分的人数.
【详解】
解:(1)由题意可得,a=1-30%-15%-10%-20%=25%,
做6 个的学生数是60÷30%×25%=50,
补全的条形图,如图所示,
故答案为:25%;
(2)由补全的条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5个;
共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5(个),
故答案为:5,5;
(3)该区引体向上的男生能获得满分的有:2400×(25%+20%)=1080(名),
即该区引体向上的男生能获得满分的有1080名.
【点睛】
本题考查了条形统计图、扇形统计图、众数、中位数、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.
3、(1)92.5,95,图见解析;(2)九年级成绩较好,理由:九年级学生成绩的中位数、众数都比八年级的高;(3)360名
【分析】
(1)根据中位数、众数的意义求解即可,求出“A组”的频数才能补全频数分布直方图;
(2)从中位数、众数、方差的角度比较得出结论;
(3)用样本估算总体即可.
【详解】
解:(1)由题意可知,八年级10名同学成绩从小到大排列后,处在中间位置的两个数都是92,93因此中位数是92.5,即a=92.5;
九年级10名学生成绩出现次数最多的是95,共出现3次,因此众数是95,即b=95,
九年级10名学生成绩处在“A组”的有10﹣1﹣2﹣5=2(人),补全频数分布直方图如下:
故答案为:92.5;95;
(2)九年级成绩较好,理由:九年级学生成绩的中位数、众数都比八年级的高;
(3)1200×30%=360(名),
故该校八年级约有360名同学被评为优秀.
【点睛】
本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
4、(1)a=2,b=90,c=90,d=90;(2)31;(3)八年级的学生成绩好,理由见解析;(4)1040人
【分析】
(1)通过八年级抽取人数10人,即可得到a,根据中位数、平均数、众数的定义得到b、c、d;
(2)根据方差的计算公式,求解即可;
(3)由于中位数和众数相同,通过分析平均数和方差即可得到答案;
(4)根据抽取的人中,不低于90分的比例即可得到两个年级共多少名学生达到“优秀”.
【详解】
解:(1)观察八年级95分的有2人,故a=2;
七年级成绩按从小到大顺序排列为80,85,85,85,90,90,90,95,95,100,
七年级的中位数为,故b=90;
八年级的平均数为:,故c=90;
八年级中90分的最多,故d=90;
(2)七年级的方差;
(3)八年级的学生成绩好,理由如下:
七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更稳定,
综上,八年级的学生成绩好;
(4)∵(人),
∴估计该校七、八年级这次竞赛达到优秀的有1040人.
【点睛】
本题考查了中位数、众数、方差、平均数,以及样本估计总体,审清题中数据并了解基本的定义是解题的关键.
5、(1)200、11%;(2)见解析;(3)144
【分析】
(1)根据第一组的频数是18,所占百分比是9%,即可求得总数,即样本容量以及c的值;
(2)求得a的值,即可作出直方图;
(3)利用总数600乘以成绩小于或者等于70分的所占的百分比即可.
【详解】
解:(1)样本容量是:18÷9%=200;
c==0.11=11%,
故答案为:200、11%;
(2)a=200-18-30-50-22=80,
补全频数分布直方图,如下:
(3)600×(9%+15%)=144(人).
答:估计该校八年级同学中需要加强锻炼和提高的有144人.
故答案为:144.
【点睛】
本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.