华东师大版七年级数学下册第8章一元一次不等式同步练习试卷(word解析版)

文档属性

名称 华东师大版七年级数学下册第8章一元一次不等式同步练习试卷(word解析版)
格式 zip
文件大小 239.5KB
资源类型 教案
版本资源 华师大版
科目 数学
更新时间 2022-03-08 05:10:38

图片预览

文档简介

七年级数学下册第8章一元一次不等式同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如果不等式组的解集是,那么a的值可能是(  )
A. B.0 C.﹣0.7 D.1
2、在二元一次方程12x+y=8中,当y<0时,x的取值范围是( ).
A. B. C. D.
3、已知关于x的不等式组只有四个整数解,则实数a的取值范围( )
A.﹣3≤a<﹣2 B.﹣3≤a≤﹣2 C.﹣3<a≤﹣2 D.﹣3<a<﹣2
4、用不等式表示“的5倍大于-7”的数量关系是( )
A.5<-7 B.5>-7 C.>7 D.7<5
5、已知,那么下列各式中,不一定成立的是( )
A. B. C. D.
6、若成立,则下列不等式成立的是( )
A. B.
C. D.
7、解集如图所示的不等式组为(  )
A. B. C. D.
8、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为(  )
A.24人 B.23人 C.22人 D.不能确定
9、若xA.﹣x+2<﹣y+2 B.4x>4y C.﹣3x<﹣3y D.x﹣210、下列选项正确的是( )
A.不是负数,表示为
B.不大于3,表示为
C.与4的差是负数,表示为
D.不等于,表示为
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、 “x的2倍与6的和是负数”用不等式表示为_____.
2、不等式的非负整数解是__.
3、不等式的解集是_______.
4、不等式组:,写出其整数解的和_____.
5、根据“3x与5的和是负数”可列出不等式 _________.
三、解答题(5小题,每小题10分,共计50分)
1、解不等式组﹣3x﹣17<4(x+1)≤3x+6,并将解集在数轴上表示出来.
2、已知-x<-y,用“<”或“>”填空:
(1)7-x________7-y.
(2)-2x________-2y.
(3)2x________2y.
(4)x_______y.
3、解不等式组,并求出它的正整数解.
4、我们把称作二阶行列式,规定他的运算法则为.如:.如果有,求的解集.
5、为奖励在文艺汇演中表现突出的同学,班主任派小亮到文具店为获奖同学购买奖品.小亮发现,如果买1个笔记本和3支钢笔,则需要18元;如果买2个笔记本和5支钢笔,则需要31元.
(1)求购买每个笔记本和每支钢笔各多少元?
(2)班主任给小亮的班费是100元,需要奖励的同学是24名(每人奖励一件奖品),若购买的钢笔数不少于笔记本数,求小亮有哪几种购买方案?
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据不等式组解集的确定方法:大大取大可得,再在选项中找出符合条件的数即可.
【详解】
解:∵不等式组的解集是,
∴a≤,
而,
故选:C.
【点睛】
本题考查一元一次不等式组的解法,理解一元一次不等式组的解集的意义是正确解答的前提.
2、C
【解析】

3、C
【解析】
【分析】
先求出不等式解组的解集为,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即可得到答案.
【详解】
解:
解不等式①得;
解不等式②得;
∵不等式组有解,
∴不等式组的解集是,
∴不等式组只有4个整数解,
∴不等式组的4个整数解是:1、0、-1、-2,

故选C.
【点睛】
本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法.
4、B
【解析】
【分析】
根据题意用不等式表示出x的5倍大于-7,即可得到答案.
【详解】
解:由题意可得,
x的5倍大于-7,用不等式表示为:5x>-7,
故选:B.
【点睛】
本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.
5、A
【解析】
【分析】
根据不等式的性质1不等式不等式两边同时加或减去同一个数或整式,不等号方向不变,基本性质2:不等式两边同时乘以(或除以)同一个大于0的整数,不等号方向不变 基本性质3:不等式两边同时乘以(或除以)同一个小于0的整数,不等号方向改变,根据不等式性质对各选项进行一一分析判断即可.
【详解】
解:.,不妨设,
则,
选项符合题意;
B.,

选项B不符合题意;
C.,


选项C不符合题意;
D.,


选项D不符合题意;
故选:A.
【点睛】
本题考查不等式性质,掌握不等式性质是解题关键.
6、C
【解析】
【分析】
根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变解答.
【详解】
解:A、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;
B、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;
C、不等式a>b两边都乘2,不等号的方向不变,都减1,不等号的方向不变,符合题意;
D、因为≥0,当=0时,不等式a>b两边都乘,不等式不成立,不符合题意;
故选:C.
【点睛】
本题考查了不等式的基本性质.不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.
7、A
【解析】
【分析】
根据图象可得数轴所表示的不等式组的解集,然后依据不等式组解集的确定方法“同大取大,同小取小,小大大小中间找,大大小小无处找”,依次确定各选项的解集进行对比即可.
【详解】
解:根据图象可得,数轴所表示的不等式组的解集为:

A选项解集为:,符合题意;
B选项解集为:,不符合题意;
C选项解集为:,不符合题意;
D选项解集为:,不符合题意;
故选:A.
【点睛】
题目主要考查不等式组的解集在数轴上的表示及解集的确定,理解不等式组解集的确定方法是解题关键.
8、C
【解析】
【分析】
根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x为整数.
【详解】
解:设每组预定的学生数为x人,由题意得,
解得
是正整数
故选:C.
【点睛】
本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.
9、D
【解析】
【分析】
不等式的性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变;根据不等式的基本性质逐一判断即可.
【详解】
解:A、不等式x﹣y,
不等式﹣x>﹣y的两边都加上2,不等号的方向不变,即﹣x+2>﹣y+2,原变形错误,
故此选项不符合题意;
B、不等式xC、不等式x﹣3y,原变形错误,故此选项不符合题意;
D、不等式x故选:D.
【点睛】
本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.
10、C
【解析】
【分析】
由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.
【详解】
解:.不是负数,可表示成,故本选项不符合题意;
.不大于3,可表示成,故本选项不符合题意;
.与4的差是负数,可表示成,故本选项符合题意;
.不等于,表示为,故本选项不符合题意;
故选:C.
【点睛】
本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.
二、填空题
1、
【解析】
【分析】
根据题意列出不等式即可.
【详解】
解:“x的2倍与6的和是负数”用不等式表示为,
故答案为:.
【点睛】
本题考查了列不等式,读懂题意是解本题的关键.
2、,1,2
【解析】
【分析】
由题意根据解一元一次不等式基本步骤:移项、合并同类项可得答案.
【详解】
解:移项得:,
合并同类项得:,
故不等式的非负整数解是,1,2.
故答案为:x=0,1,2.
【点睛】
本题主要考查解一元一次不等式的基本能力,注意掌握解不等式的基本步骤是解题的关键.
3、##
【解析】
【分析】
根据移项,合并同类项,系数化为1的步骤解一元一次不等式即可.
【详解】
解:移项得,
合并同类项得,
系数化为1得.
故答案为.
【点睛】
本题考查了解一元一次不等式,掌握不等式的性质是解题的关键.
4、0
【解析】
【分析】
分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.
【详解】
解:,
解不等式①,得;
解不等式②,得.
∴不等式组的解集为,
∴不等式组的整数解分别为-2、-1、0、1、2,
∴不等式组的整数解的和为:.
故答案为:0.
【点睛】
本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.
5、
【解析】
【分析】
3x与5的和为,和是负数即和小于0,列出不等式即可得出答案.
【详解】
3x与5的和是负数表示为.
故答案为:.
【点睛】
本题考查列不等式,根据题目信息确定不等式是解题的关键.
三、解答题
1、,在数轴上表示见解析.
【解析】
【分析】
首先根据解一元一次不等式组的步骤求出不等式组的解集,然后在数轴上表示出来即可.
【详解】
解:∵ ﹣3x﹣17<4(x+1)≤3x+6,
解不等式﹣3x﹣17<4(x+1),
去括号得:
移项得:
合并同类项得:
系数化为1得:
解不等式4(x+1)≤3x+6,
去括号得:
移项得:
合并同类项得:
∴不等式组的解集为,
在数轴上表示如下:

【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
2、 (1)<
(2)<
(3)>
(4)>
【解析】
【分析】
根据不等式的性质求解即可.
(1)
解:∵,
∴不等号两边都加7,依据不等式的性质1,得7-x<7-y.
(2)
解:∵,
∴不等号两边都乘以2,依据不等式的性质2,得-2x<-2y.
(3)
解:∵,
∴不等号两边都乘以-2;依据不等式的性质3,得2x>2y.
(4)
解:∵,
∴不等号两边都乘以,依据不等式的性质3,得x>y.
故答案为:(1)< (2)< (3)> (4)>
【点睛】
本题考查了不等式的性质:1、把不等式的两边都加(或减去)同一个数或式子,不等号的方向不变;2、不等式两边都乘(或除以)同一个正数,不等号的方向不变;3、不等式两边都乘(或除以)同一个负数,不等号的方向改变.
3、不等式组的正整数解为:
【解析】
【详解】
解:
由①得:
即,解得
由②得:
即 解得:
所以不等式组的解集为:
所以不等式组的正整数解为:
【点睛】
本题考查的是一元一次不等式组的解法,求解不等式组的正整数解,掌握“解一元一次不等式组的步骤”是解本题的关键,注意不等式组的解集是两个不等式解集的公共部分.
4、x的解集为.
【解析】
【分析】
根据题意列出不等式,然后去括号、移项、合并同类项,再把x的系数化为1即可得不等式解集.
【详解】
解:由题意得,
去括号得:,
移项合并同类项得:,
把x的系数化为1得:,
x的解集为:.
【点睛】
本题考查解一元一次不等式,理解题目中定义的新运算,正确掌握解不等式的基本步骤是解题的关键.
5、(1)设每个笔记本3元,每支钢笔5元;(2)有三种购买方案:①购买笔记本10个,则购买钢笔14个;②购买笔记本11个,则购买钢笔13个;③购买笔记本12个,则购买钢笔12个.
【解析】
【分析】
(1)每个笔记本x元,每支钢笔y元,根据题意列出方程组求解即可;
(2)设购买笔记本m个,则购买钢笔(24-m)个利用总费用不超过100元和钢笔数不少于笔记本数列出不等式组求得m的取值范围后即可确定方案.
【详解】
解:(1)设每个笔记本x元,每支钢笔y元
依题意得:
解得:
答:设每个笔记本3元,每支钢笔5元.
(2)设购买笔记本m个,则购买钢笔(24-m)个
依题意得:
解得:12≥m≥10
∵m取正整数
∴m=10或11或12
∴有三种购买方案:①购买笔记本10个,则购买钢笔14个.
②购买笔记本11个,则购买钢笔13个.
③购买笔记本12个,则购买钢笔12个.
【点睛】
本题考查了一元一次不等式组的应用及二元一次方程组的应用,解题的关键是仔细的分析题意并找到等量关系列方程或不等关系列不等式.