【备考2022】泰安市近十年中考数学 考点19 反比例函数与一次函数(含答案)

文档属性

名称 【备考2022】泰安市近十年中考数学 考点19 反比例函数与一次函数(含答案)
格式 doc
文件大小 408.7KB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2022-03-07 17:01:03

图片预览

文档简介

中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
十九、反比例函数与一次函数
[基础知识]
待定系数法确定一次函数、反比例函数解析式;
根据图象直接写出不等式(组)的解集;
利用坐标和两点间距离公式求线段的长度 ;
利用函数式求三角形或其他图形的面积;
分类讨论的思想:等腰三角形、直角三角形。
[中考真题]
(2021)21.(10分)如图,点P为函数y=x+1与函数y=(x>0)图象的交点,点P的纵坐标为4,PB⊥x轴,垂足为点B.
(1)求m的值;
(2)点M是函数y=(x>0)图象上一动点,过点M作MD⊥BP于点D,若tan∠PMD=,求点M的坐标.
(2020)20.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A(3,a),点B(14﹣2a,2).
(1)求反比例函数的表达式;
(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.
(2019)21.(11分)已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S△OAB=.
(1)求反比例函数与一次函数的表达式;
(2)若点P为x轴上一点,△ABP是等腰三角形,
求点P的坐标.
(2018)22.(9分)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.
(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;
(2)若AF﹣AE=2,求反比例函数的表达式.
(2017)25.如图,在平面直角坐标系中,Rt△AOB的斜边OA在x轴的正半轴上,∠OBA=90°,且tan∠AOB=,OB=2,反比例函数y=的图象经过点B.
(1)求反比例函数的表达式;
(2)若△AMB与△AOB关于直线AB对称,一次函数y=mx+n的图象过点M、A,求一次函数的表达式.
(2016)25.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.
(1)求反比例函数和一次函数的表达式;
(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.
(2015)26.(8分)一次函数y=kx+b与反比例函数y=的图象相交于A(﹣1,4),B(2,n)两点,直线AB交x轴于点D.
(1)求一次函数与反比例函数的表达式;
(2)过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.
( http: / / www.21cnjy.com )
(2014)26.如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.
(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;
(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.
(2013)25.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点C,一次函数y=ax+b的图象经过点A,
(1)求反比例函数与一次函数的解析式;
(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.
(2012)25.(2012泰安)如图,一次函数的图象与坐标轴分别交于A,B两点,与反比例函数的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.
(1)求一次函数与反比例的解析式;
(2)直接写出当时,的解集.
[答案解析]
(2021)21.(10分)如图,点P为函数y=x+1与函数y=(x>0)图象的交点,点P的纵坐标为4,PB⊥x轴,垂足为点B.
(1)求m的值;
(2)点M是函数y=(x>0)图象上一动点,过点M作MD⊥BP于点D,若tan∠PMD=,求点M的坐标.
【分析】
【解答】:∵点P为函数y=x+1图象的点,点P的纵坐标为4,
∴4=x+1,解得:x=6,
∴点P(6,4),
∵点P为函数y=x+1与函数y=(x>0)图象的交点,
∴4=,
∴m=24;
(2)设点M的坐标(x,y),
∵tan∠PMD=,
∴=,
①点M在点P右侧,如图,
∵点P(6,4),
∴PD=4﹣y,DM=x﹣6,
∴=,
∵xy=m=24,
∴y=,
∴2(4﹣)=x﹣6,解得:x=6或8,
∵点M在点P右侧,
∴x=8,
∴y=3,
∴点M的坐标为(8,3);
②点M在点P左侧,
∵点P(6,4),
∴PD=y﹣4,DM=6﹣x,
∴=,
∵xy=m=24,
∴y=,
∴2(4﹣)=x﹣6,解得:x=6或8,
∵点M在点P左侧,
∴此种情况不存在;
∴点M的坐标为(8,3).

(2020)20.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A(3,a),点B(14﹣2a,2).
(1)求反比例函数的表达式;
(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.
【分析】(1)点A(3,a),点B(14﹣2a,2)在反比例函数上,则3×a=(14﹣2a)×2,即可求解;
(2)a=4,故点A、B的坐标分别为(3,4)、(6,2),求出一次函数的表达式为:y=﹣x+6,则点C(0,6),故OC=6,进而求解.
【解答】:(1)∵点A(3,a),点B(14﹣2a,2)在反比例函数上,
∴3×a=(14﹣2a)×2,解得:a=4,则m=3×4=12,
故反比例函数的表达式为:y=;
(2)∵a=4,故点A、B的坐标分别为(3,4)、(6,2),
设直线AB的表达式为:y=kx+b,则,解得,
故一次函数的表达式为:y=﹣x+6;
当x=0时,y=6,故点C(0,6),故OC=6,
而点D为点C关于原点O的对称点,则CD=2OC=12,
△ACD的面积=×CD xA=×12×3=18.
(2019)21.(11分)已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S△OAB=.
(1)求反比例函数与一次函数的表达式;
(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.
【分析】(1)先求出OB,进而求出AD,得出点A坐标,最后用待定系数法即可得出结论;
(2)分三种情况,①当AB=PB时,得出PB=5,即可得出结论;
②当AB=AP时,利用点P与点B关于AD对称,得出DP=BD=4,即可得出结论;
③当PB=AP时,先表示出AP2=(9﹣a)2+9,BP2=(5﹣a)2,进而建立方程求解即可得出结论.
【解答】: (1)如图1,过点A作AD⊥x轴于D,
∵B(5,0),
∴OB=5,
∵S△OAB=,
∴×5×AD=,
∴AD=3,
∵OB=AB,
∴AB=5,
在Rt△ADB中,BD==4,
∴OD=OB+BD=9,
∴A(9,3),
将点A坐标代入反比例函数y=中得,m=9×3=27,
∴反比例函数的解析式为y=,
将点A(9,3),B(5,0)代入直线y=kx+b中,,
∴,
∴直线AB的解析式为y=x﹣;
(2)由(1)知,AB=5,
∵△ABP是等腰三角形,
∴①当AB=PB时,
∴PB=5,
∴P(0,0)或(10,0),
②当AB=AP时,如图2,
由(1)知,BD=4,
易知,点P与点B关于AD对称,
∴DP=BD=4,
∴OP=5+4+4=13,∴P(13,0),
③当PB=AP时,设P(a,0),
∵A(9,3),B(5,0),
∴AP2=(9﹣a)2+9,BP2=(5﹣a)2,
∴(9﹣a)2+9=(5﹣a)2
∴a=,
∴P(,0),
即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(,0).
【总结】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,三角形的面积,等腰三角形的性质,用分类讨论的思想解决问题是解本题的关键.
(2018)22.(9分)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.
(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;
(2)若AF﹣AE=2,求反比例函数的表达式.
【分析】(1)根据矩形的性质,可得A,E点坐标,根据待定系数法,可得答案;
(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F点坐标,根据待定系数法,可得m的值,可得答案.
【解答】:(1)点B坐标为(﹣6,0),AD=3,AB=8,E为CD的中点,
∴点A(﹣6,8),E(﹣3,4),
函数图象经过E点,
∴m=﹣3×4=﹣12,
设AE的解析式为y=kx+b,

解得,
一次函数的解析是为y=﹣x;
(2)AD=3,DE=4,
∴AE==5,
∵AF﹣AE=2,
∴AF=7,
BF=1,
设E点坐标为(a,4),则F点坐标为(a﹣3,1),
∵E,F两点在函数y=图象上,
∴4a=a﹣3,解得a=﹣1,
∴E(﹣1,4),
∴m=﹣1×4=﹣4,
∴y=﹣.
【总结】 本题考查了反比例函数,解(1)的关键是利用待定系数法,又利用了矩形的性质;解(2)的关键利用E,F两点在函数y=图象上得出关于a的方程.
(2017)25.如图,在平面直角坐标系中,Rt△AOB的斜边OA在x轴的正半轴上,∠OBA=90°,且tan∠AOB=,OB=2,反比例函数y=的图象经过点B.
(1)求反比例函数的表达式;
(2)若△AMB与△AOB关于直线AB对称,一次函数y=mx+n的图象过点M、A,求一次函数的表达式.
【分析】 (1)过点B作BD⊥OA于点D,设BD=a,通过解直角△OBD得到OD=2BD.然后利用勾股定理列出关于a的方程并解答即可;
(2)欲求直线AM的表达式,只需推知点A、M的坐标即可.通过解直角△AOB求得OA=5,则A(5,0).根据对称的性质得到:OM=2OB,结合B(4,2)求得M(8,4).然后由待定系数法求一次函数解析式即可.
【解答】:(1)过点B作BD⊥OA于点D,
设BD=a,
∵tan∠AOB==,
∴OD=2BD.
∵∠ODB=90°,OB=2,
∴a2+(2a)2=(2)2,
解得a=±2(舍去﹣2),
∴a=2.
∴OD=4,
∴B(4,2),
∴k=4×2=8,
∴反比例函数表达式为:y=;
(2)∵tan∠AOB=,OB=2,
∴AB=OB=,
∴OA===5,
∴A(5,0).
又△AMB与△AOB关于直线AB对称,B(4,2),
∴OM=2OB,
∴M(8,4).
把点M、A的坐标分别代入y=mx+n,得

解得,
故一次函数表达式为:y=x﹣.
(2016)25.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.
(1)求反比例函数和一次函数的表达式;
(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.
【分析】(1)由正方形OABC的顶点C坐标,确定出边长,及四个角为直角,根据AD=2DB,求出AD的长,确定出D坐标,代入反比例解析式求出m的值,再由AM=2MO,确定出MO的长,即M坐标,将M与D坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;
(2)把y=3代入反比例解析式求出x的值,确定出N坐标,得到NC的长,设P(x,y),根据△OPM的面积与四边形OMNC的面积相等,求出y的值,进而得到x的值,确定出P坐标即可.
【解答】::(1)∵正方形OABC的顶点C(0,3),
∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,
∵AD=2DB,
∴AD=AB=2,
∴D(﹣3,2),
把D坐标代入y=得:m=﹣6,
∴反比例解析式为y=﹣,
∵AM=2MO,
∴MO=OA=1,即M(﹣1,0),
把M与D坐标代入y=kx+b中得:,
解得:k=b=﹣1,
则直线DM解析式为y=﹣x﹣1;
(2)把y=3代入y=﹣得:x=﹣2,
∴N(﹣2,3),即NC=2,
设P(x,y),
∵△OPM的面积与四边形OMNC的面积相等,
∴(OM+NC)OC=OM|y|,即|y|=9,
解得:y=±9,
当y=9时,x=﹣10,当y=﹣9时,x=8,
则P坐标为(﹣10,9)或(8,﹣9).
【总结】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定一次函数、反比例函数解析式,坐标与图形性质,正方形的性质,以及三角形面积计算,熟练掌握待定系数法是解本题的关键.
(2015)26.(8分)(2015 泰安)一次函数y=kx+b与反比例函数y=的图象相交于A(﹣1,4),B(2,n)两点,直线AB交x轴于点D.
(1)求一次函数与反比例函数的表达式;
(2)过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.
( http: / / www.21cnjy.com )
【分析】(1)把A(﹣1,4)代入反比例函数y=可得m的值,即确定反比例函数的解析式;再把B(2,n)代入反比例函数的解析式得到n的值;然后利用待定系数法确定一次函数的解析式;
(2)先由BC⊥y轴,垂足为C以及B点坐 ( http: / / www.21cnjy.com )标确定C点坐标,再利用待定系数法求出直线AC的解析式,进一步求出点E的坐标,然后计算得出△AED的面积S.
【解答】:(1)把A(﹣1,4)代入反比例函数y=得,m=﹣1×4=﹣4,
所以反比例函数的解析式为y=﹣;
把B(2,n)代入y=﹣得,2n=﹣4,
解得n=﹣2,
所以B点坐标为(2,﹣2),
把A(﹣1,4)和B(2,﹣2)代入一次函数y=kx+b得,

解得,
所以一次函数的解析式为y=﹣2x+2;
(2)∵BC⊥y轴,垂足为C,B(2,﹣2),
∴C点坐标为(0,﹣2).
设直线AC的解析式为y=px+q,
∵A(﹣1,4),C(0,﹣2),
∴,
解,
∴直线AC的解析式为y=﹣6x﹣2,
当y=0时,﹣6x﹣2=0,解答x=﹣,
∴E点坐标为(﹣,0),
∵直线AB的解析式为y=﹣2x+2,
∴直线AB与x轴交点D的坐标为(1,0),
∴DE=1﹣(﹣)=,
∴△AED的面积S=××4=.
( http: / / www.21cnjy.com )
【总结】 本题考查了反比例函数与一次 ( http: / / www.21cnjy.com )函数的交点问题,利用待定系数法求反比例函数与一次函数的解析式,三角形的面积,正确求出函数的解析式是解题的关键.
(2014)26.如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.
(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;
(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.
【分析】(1)根据题意得出:A′点的坐标为:(4,2),B′点的坐标为:(8,0),进而利用待定系数法求一次函数解析式即可;
(2)首先得出A′B′的中点M的坐标为:(m+4﹣2,1)则2m=m+2,求出m的值即可.
【解答】:(1)由图②值:A′点的坐标为:(4,2),B′点的坐标为:(8,0),
∴k=4×2=8,∴y=,
把(4,2),(8,0)代入y=ax+b得:,解得:,
∴经过A′、B′两点的一次函数表达式为:y=﹣x+4;
(2)当△AOB向右平移m个单位时,A′点的坐标为:(m,2),B′点的坐标为:(m+4,0)
则A′B′的中点M的坐标为:(m+4﹣2,1)∴2m=m+2,解得:m=2,
∴当m=2时,反比例函数y=的图象经过点A′及A′B′的中点M.
【总结】此题主要考查了待定系数法求一次函数解析式以及坐标的平移等知识,得出A′,B′点坐标是解题关键.
 
(2013)25.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点C,一次函数y=ax+b的图象经过点A,
(1)求反比例函数与一次函数的解析式;
(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.
【分析】 (1)先根据正方形的性质求出点C的坐标为(5,﹣3),再将C点坐标代入反比例函数y=中,运用待定系数法求出反比例函数的解析式;同理,将点A,C的坐标代入一次函数y=ax+b中,运用待定系数法求出一次函数函数的解析式;
(2)设P点的坐标为(x,y),先由△OAP的面积恰好等于正方形ABCD的面积,列出关于x的方程,解方程求出x的值,再将x的值代入y=﹣,即可求出P点的坐标.
【解答】:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣3),
∴AB=5,
∵四边形ABCD为正方形,
∴点C的坐标为(5,﹣3).
∵反比例函数y=的图象经过点C,
∴﹣3=,解得k=﹣15,
∴反比例函数的解析式为y=﹣;
∵一次函数y=ax+b的图象经过点A,C,
∴,
解得,
∴一次函数的解析式为y=﹣x+2;
(2)设P点的坐标为(x,y).
∵△OAP的面积恰好等于正方形ABCD的面积,
∴×OA |x|=52,
∴×2|x|=25,
解得x=±25.
当x=25时,y=﹣=﹣;
当x=﹣25时,y=﹣=.
∴P点的坐标为(25,﹣)或(﹣25,).
【总结】本题考查了正方形的性质,反比例函数与一次函数的交点问题,运用待定系数法求反比例函数与一次函数的解析式,三角形的面积,难度适中.运用方程思想是解题的关键. 
(2012)25.(2012泰安)如图,一次函数的图象与坐标轴分别交于A,B两点,与反比例函数的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.
(1)求一次函数与反比例的解析式;
(2)直接写出当时,的解集.
【分析】 :反比例函数与一次函数的交点问题。
【解答】: (1)∵OB=2,△AOB的面积为1
∴B(﹣2,0),OA=1,
∴A(0,﹣1)
∴ ,
∴,

又∵OD=4,OD⊥x轴,
∴C(﹣4,y),
将代入得y=1,
∴C(﹣4,1)
∴,
∴,

(2)当时,的解集是.
[解题攻略]
待定系数法确定一次函数、反比例函数解析式,根据图象的位置关系求出不等式(组)的解集。坐标与图形性质,正方形的性质,以及三角形面积计算,熟练掌握待定系数法是解本题的关键.
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录