中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
人教版初中数学八年级下册第十八单元《平行四边形》单元测试卷
考试范围:第十八章;考试时间:120分钟;总分:100分
学校:___________姓名:___________班级:___________考号:___________
注意:本试卷包含Ⅰ、Ⅱ两卷。第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。答案写在试卷上均无效,不予记分。
第I卷(选择题)
一、选择题(本大题共12小题,共36分)
如图,在 中,全等三角形共有
A. 对 B. 对 C. 对 D. 对
如图,在中,对角线和相交于点,如果,,,那么的取值范围是
A.
B.
C.
D.
如图,在四边形中,对角线,相交于点,下列条件不能判定四边形为平行四边形的是
A. B.
C. D.
点,,,在同一平面内,从;;;这四个条件中任意选两个,能使四边形是平行四边形的选法有
A. 种 B. 种 C. 种 D. 种
如图所示,点是矩形对角线的中点,交于点若,,则周长为
A.
B.
C.
D.
在数学活动课上,老师和同学们想判断一个四边形门框是否为矩形,下面是某合作学习小组的位同学拟定的方案,其中正确的是
A. 测量对角线是否相互平分
B. 测量两组对边是否分别相等
C. 测量一组对角是否都为直角
D. 测量四边形的三个角是否都为直角
如图,在菱形中,若的周长是,则菱形的周长是
A.
B.
C.
D.
菱形具有而一般平行四边形不具有的性质是
A. 对边相等 B. 对角相等
C. 对角线互相平分 D. 对角线互相垂直
如图,在正方形外侧作等边三角形,,相交于点,则
A.
B.
C.
D.
已知四边形是平行四边形,下列结论不正确的是
A. 当时,它是菱形 B. 当时,它是菱形
C. 当时,它是矩形 D. 当时,它是正方形
矩形与如图放置,点,,共线,点,,共线,连接,取的中点,连接若,,则
A. B. C. D.
如图,在平面直角坐标系中,的斜边在第一象限,并与轴的正半轴夹角为为的中点,,则点的坐标为
A.
B.
C.
D.
第II卷(非选择题)
二、填空题(本大题共4小题,共12分)
如图,在 中,、是对角线上两点,,,,则的大小为______.
在正方形中,为上一点,,,垂足分别为点,,如果,那么的长为_______.
在四边形中,,,如果添加一个条件,即可推出该四边形是矩形,那么这个条件可以是 .
如图,菱形的对角线,相交于点,过点作于点,连接,若,,则的长为______.
三、计算题(本大题共8小题,共48分)
如图,矩形的对角线与相交点,,,分别为,的中点,求的长度.
已知:如图,将矩形纸片沿对角线对折,点落在点的位置,与相交于点.
求证:是等腰三角形;
若,,求的长.
如图,在 中,、分别为边和的中点,连接、,且.
求证:≌.
当四边形为菱形时,求出该菱形的面积.
如图,某舞台的地面是由两个并排的正方形组成的,其中正方形的边长为米,正方形的边长为米,现要求将图中阴影部分涂上油漆.
求出涂油漆部分的面积;结果要求化简
若所涂油漆的价格是每平方米元,求当米时,所涂油漆的费用是多少元?
如图,点、、、在同一直线上,点和点分别在直线的两侧,且,,.
求证:四边形是平行四边形;
若,,,当为______时,四边形是菱形.
在如图所示的网格中,每个小正方形的边长均为,正方形顶点叫格点,连接两个网格格点的线段叫网格线段,点固定在格点上.
若是图中能用网格线段表示的最大无理数,则______.
请你画出顶点在格点上边长为的所有菱形包含正方形,你画出的菱形面积为______.
如图,在中,、是两条中线,、分别是、的中点,,求的长.
如图,在直线上将正方形和正方形的边和边靠在一起,连接,过点作,交于点连接,,其中交于点.
求证:为等腰直角三角形.
若,,求的长.
答案和解析
1.【答案】
解:四边形是平行四边形,
,;,;
,,;
≌;
同理可得出≌;
,,;
≌;
同理可得:≌
因此本题共有对全等三角形.
故选:.
2.【答案】
解:四边形是平行四边形,,,
,,
在中,,
,
.
故选C.
3.【答案】
4.【答案】
5.【答案】
【解析】解:点是矩形对角线的中点,,
,点为中点.
在中,利用勾股定理求得.
在中,利用勾股定理求得.
.
周长为.
故选:.
6.【答案】
7.【答案】
8.【答案】
9.【答案】
10.【答案】
11.【答案】
【解析】解:如图,延长交于点,
四边形和四边形都是矩形,
,、,
,
,
又是的中点,
,
在和中,
,
≌,
,,
,
、,
,
则,
故选:.
12.【答案】
【解析】解:如图,
的斜边在第一象限,并与轴的正半轴夹角为.
,
,
为的中点,
,
,
,
则点的坐标为:.
故选:.
13.【答案】
【解析】解:设,
,,
,
,
,
,
四边形是平行四边形,
,
,
,
,
解得:,
即;
故答案为:.
14.【答案】
15.【答案】或或或填一个即可
【解析】 ,,
四边形是平行四边形,根据定义若加条件,需要加一个直角,即或或或,
则可由定义:有一个角是直角的平行四边形是矩形,推出四边形是矩形.
16.【答案】
【解析】解:是菱形,
,,,
,
,,
.
根据菱形面积对角线积的一半可求,再根据直角三角形斜边上的中线等于斜边的一半.
17.【答案】解:四边形是矩形,
,,
,
点、是,的中点,
是的中位线,
.
18.【答案】解:由折叠可知,
,
,
,
,
是等腰三角形.
设,则,,
在中,根据勾股定理有.
解得:,
的长为.
19.【答案】证明:四边形是平行四边形,
,,,
、分别为边、的中点,
,,
,
在和中
,
≌;
解:四边形为菱形,
.
又点是边的中点,
,即.
又,
,
,即为等边三角形,如图,
过点作于,
,
,
菱形的面积为.
20.【答案】解:阴影部分的面积为:
;
当时,
,
则所涂油漆费用为:元.
21.【答案】
【解析】证明:,
,
在和中,
,
≌,
,,
,
四边形是平行四边形;
解:如图,连接,交于点,
四边形是平行四边形,
当时,四边形是菱形,
,,,
,
,
,
,
.
故答案为:.
22.【答案】 或
【解析】解:;
故答案为:;
如图所示,菱形面积为,菱形面积为.
故答案为:或.
23.【答案】解:如图,连接,连接并延长交于点.
、是两条中线,即是的中位线,
,且.
∽,
又,
≌,
,,则
又点是中点,
,
24.【答案】解:四边形和四边形都是正方形,
,,,,
,,
四边形是平行四边形,
,,
在和中,
,
≌,
,,
,
,
,
,
,
,
,
为等腰直角三角形.
四边形和四边形都是正方形,
,,,
在中,,
,
,
,
,
.
的长为.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)