课件18张PPT。第
1
部分第二章章末小结核心要点归纳阶段质量检测 1.离散型随机变量的分布列
(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则X的分布列为 有时为了简单起见,也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列. (2)求随机变量的分布列的步骤可以归纳为:
①明确随机变量X的取值;
②准确求出X取每一个值时的概率;
③列成表格的形式.
[说明] 已知随机变量的分布列,则它在某范围内取值的概率等于它取这个范围内各个值时的概率之和. [说明] 利用公式P(A|B)=P(A)和P(AB)=P(A)P(B)说明事件A,B的相互独立性是比较困难的,通常是直观判断一个事件的发生与否是否影响另一个事件的发生.
注意辨析独立事件与互斥事件,独立事件强调一个事件的发生与否对另一个事件发生的概率没有影响,互斥事件则是强调两个事件不能同时发生.3.离散型随机变量的均值与方差
(1)均值、方差:一般地,若离散型随机变量X的分布列为 则称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平. 4.几种常见的分布列
(1)两点分布:如果随机变量X的分布列具有下表的形式,则称X服从两点分布,并称p=P(X=1)为成功概率.两点分布又称0-1分布、伯努利分布. [说明] 若随机变量X~B(n,p),则需明确在n次独立重复试验中,每次试验的两种结果中哪一个结果出现k次.
(4)二项分布的均值与方差:
①两点分布:若随机变量X服从参数为p的两点分布,则E(X)=p,D(X)=p(1-p).
②二项分布:若随机变量X~B(n,p),则E(X)=np,D(X)=np(1-p). (2)正态分布的3σ原则:若随机变量X~N(μ,σ2),则
P(μ-σ<X≤μ+σ)=0.682 6,
P(μ-2σ<X≤μ+2σ)=0.954 4,
P(μ-3σ<X≤μ+3σ)=0.997 4.
在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X只取(μ-3σ,μ+3σ)之间的值,并简称之为3σ原则.点击下图