(共21张PPT)
17.1 变量与函数
新课导入
情景活动
折纸游戏
在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.
生活中的变量、常量.
推进新课
指出下列四个问题中的变量和常量:
1.汽车以60km/h的速度匀速行驶,行驶路程为skm,行驶时间为th.
变量与常量
知识点 1
常量
变量
变量
2.水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长和直径之比)为π.
变量:半径r,圆周长C;
常量:圆周率π.
3.某市的自来水价为4元/t.现在抽取若干户居民调查水费支出情况,记某户月用水量为x t,月应交水费y元.
变量:月用水量x t,月应交水费y元;
常量:自来水价4元/t.
4.把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本.
变量:第一个抽屉x本,第二个抽屉y本;
常量:10本书.
5.电影票的售价为10元/张.设一场电影售出x张票,票房收入为y元。
常量
变量
变量
6.用10m长的绳子围一个矩形.当矩形的一边长为x时,它的邻边长为y。
常量
变量
变量
想
想
一
问题中各有几个变量?
同一个问题中判断一个量是变量还是常量我们要注意什么?
特别
提醒
1.看这个量所在的变化过程中,该量的值是否发生变化(或者是否会取不同的数值).
2.指出一个变化过程中的常量时,应连同它前面的符号.
随堂演练
1.某人要在规定的时间内加工100个零件,则工作效率p与时间t之间的关系,下列说法正确的是( )
A.数100和p,t都是变量 B.数100和p都是常量
C.p和t是变量 D.数100和t都是常量
C
基础巩固
(1)圆的周长l=2πr(其中l为周长,r为半径);
2.分别指出下列式子中的变量和常量:
常量
变量
变量
(2)式子m=(n-2) ×180°(m为多边形的内角和,n为边数);
常量
变量
变量
常量
常量
变量
(3)若矩形的宽为x,面积为36,则这个矩形的长为y= .
变量
3.小明带着10元钱去文具商店买日记本.已知每本日记售价2元,则小明剩余的钱数y(元)与所买日记本的本书x(本)之间的关系可以表示为y=10-2x.在这个关系式中, 是变量, 是常量.
x、y
10,-2
随堂演练
如图,在一个半径为18cm的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的一个圆环面积也随之发生变化.在这个变化过程中,变量有哪些?
小圆半径
综合应用
圆环面积
小圆面积
课堂小结
变量
常量
数值发生变化的量
数值始终不变的量
数值始终不变的量
拓展延伸
心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30):
提出概念所用的时间(x) 2 5 7 10 12 13 14 17 20
对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55
(1)上表中反映了哪两个变量之间的关系?
拓展延伸
(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?
13分钟
提出概念所用的时间(x) 2 5 7 10 12 13 14 17 20
对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55
1.从课后习题中选取;
2.完成练习册本课时的习题.
课后作业
谢 谢