苏科版七年级数学下册 11.4 解一元一次不等式 课件(共18张PPT)

文档属性

名称 苏科版七年级数学下册 11.4 解一元一次不等式 课件(共18张PPT)
格式 pptx
文件大小 464.0KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2022-03-09 21:05:56

图片预览

文档简介

(共18张PPT)
11.4 解一元一次不等式
1.理解和掌握一元一次不等式的概念;
2.会用不等式的性质熟练地解一元一次不等式.(重点、
难点)
学习目标
已知一台升降机的最大载重量是1200kg,在
一名重75kg的工人乘坐的情况下,它最多能装载
多少件25kg重的货物?
观察与思考
前面问题中涉及的数量关系是:
设能载x件25kg重的货物,因为升降机最大载重量是1200kg,所以有
75+25x≤1200. ①
工人重 + 货物重 ≤ 最大载重量.
一元一次不等式的概念

只含有一个未知数,且未知数的次数是1的不等式,称为一元一次不等式.
像75 + 25x ≤1200 这样,
它与一元一次方程的定义有什么共同点吗?
一、一元一次不等式的概念
下列不等式中,哪些是一元一次不等式
(1) 3x+2>x–1 (2)5x+3<0
(3) (4)x(x–1)<2x




左边不是整式
化简后是
x2-x<2x
练一练
为了求出升降机能装载货物的件数,需要求出满足不等式75+25x≤1200的x的值.
如何求呢?
解一元一次不等式

与解一元一次方程类似,我们将根据不等式的基本性质,进行如下步骤:
将不等式75+25x≤1200移项,得
将②式两边都除以25(即将x的系数化为1),
25x ≤ 1125. ②
得 x≤45.
因此,升降机最多装载45件25kg重的货物.
今后我们在解一元一次不等式时,将利用前面讲述的不等式的基本性质,将原不等式化成形如x ≤a(或xa,x≥a)的不等式,就可得到原不等式的解集.
这个求不等式的解集的过程称为解不等式.
二、解不等式的概念
例1 解下列一元一次不等式 :
(1) 2-5x < 8-6x ;
(2) .
解:
(1) 原不等式为2-5x < 8-6x
将同类项放在一起
即 x < 6.
移项,得 -5x+6x < 8-2,
计算结果
典例精析
解:
首先将分母去掉
去括号,得 2x-10+6≤9x
去分母,得 2(x-5)+1×6≤9x
移项,得 2x-9x≤10-6
去括号
将同类项放在一起
(2) 原不等式为
合并同类项,得 -7x ≤4
两边都除以-7,得
x≥ .
计算结果
根据不等式性质3
例2 解不等式12-6x≥2(1-2x),并把它的解集在数轴
上表示出来.
解:
首先将括号去掉
去括号,得 12-6x ≥2-4x
移项,得 -6x+4x ≥ 2-12
将同类项放在一起
合并同类项,得 -2x ≥-10
两边都除以-2,得 x ≤ 5
根据不等式基本性质3
原不等式的解集在数轴上表示如图所示.
-1
0
1
2
3
4
5
6
注:解集x≤5中包含5,所以在数轴上将表示5的点画成实心圆点.
解一元一次不等式与解一元一次方程的依据和步骤有什么异同点?
它们的依据不相同.解一元一次方程的依据是等式的性质,解一元一次不等式的依据是不等式的性质.
它们的步骤基本相同,都是去分母、去括号、移项、合并同类项、未知数的系数化为1.
这些步骤中,要特别注意的是:不等式两边都乘(或除以)同一个负数,必须改变不等号的方向.这是与解一元一次方程不同的地方.
议一议
当堂练习
1. 解下列不等式:
(1) -5x ≤10 ;
(2)4x-3 < 10x+7 .
2. 解下列不等式:
(1) 3x -1 > 2(2-5x) ;
(2) .
x ≥ -2
x >
x >
x ≤
3. 解下列不等式,并把它们的解集在数轴上表示出来:
(1) 4x-3 < 2x+7 ;
(2) .
解:(1)原不等式的解集为x<5,在数轴上表示为
(2)原不等式的解集为x≤-11,在数轴上表示为:
-1
0
1
2
3
4
5
6
0
-11
课堂小结
一元一次不等式
一元一次不等式的概念
步骤
解一元一次不等式

见本课时练习
课后作业
谢 谢