4.4氢原子光谱和波尔的原子模型(第1课时氢原子光谱和玻尔的原子模型)学案(Word版含答案)

文档属性

名称 4.4氢原子光谱和波尔的原子模型(第1课时氢原子光谱和玻尔的原子模型)学案(Word版含答案)
格式 zip
文件大小 503.8KB
资源类型 教案
版本资源 人教版(2019)
科目 物理
更新时间 2022-03-12 16:34:46

文档简介

第四章 原子结构与波粒二象性
4 氢原子光谱和玻尔的原子模型
第1课时 氢原子光谱和玻尔的原子模型
1.知道光谱、线状谱和连续谱的概念.
2.知道氢原子光谱的实验规律,知道什么是光谱分析.
3.知道玻尔原子理论的基本假设的主要内容.了解能级跃迁、轨道和能量量子化以及基态、激发态等概念.
一、光谱
1.定义:用棱镜或光栅把物质发出的光按波长(频率)展开,获得波长(频率)和强度分布的记录.
2.特征谱线:气体中中性原子的发光光谱都是线状谱,说明原子只发出几种特定频率的光,不同原子的亮线位置不同,说明不同原子的发光频率不一样,光谱中的亮线称为原子的特征谱线.
3.光谱的分类
4.太阳光谱
特点 在连续谱的背景上出现一些不连续的暗线,是一种吸收光谱
产生原因 阳光中含有各种颜色的光,但当阳光透过太阳的高层大气射向地球时,太阳高层大气中含有的元素会吸收它自己特征谱线的光,然后再向四面八方发射出去,到达地球的这些谱线看起来就暗了,这就形成了明亮背景下的暗线
5.光谱分析
(1)优点:灵敏度高,分析物质的最低量达10-13 kg.
(2)应用:a.发现新元素;b.鉴别物体的物质成分.
(3)用于光谱分析的光谱:线状光谱和吸收光谱.
6.应用:利用原子的特征谱线,可以鉴别物质和确定物质的组成成分,这种方法称为光谱分析,它的优点是灵敏度高,样本中一种元素的含量达到10-13 kg时就可以被检测到.
二、氢原子光谱的实验规律
1.许多情况下光是由原子内部电子的运动产生的,因此光谱是探索原子结构的一条重要途径.
2.巴耳末公式
(1)巴耳末对氢原子光谱的谱线进行研究得到公式:=R∞(-)(n=3,4,5,…),该公式称为巴耳末公式.式中R叫作里德伯常量,实验值为R∞=1.10×107 m-1.
(2)公式中只能取n≥3的整数,不能连续取值,波长是分立的值.
巴耳末公式的意义:以简洁的形式反映了氢原子的线状光谱的特征.
4.氢原子光谱的特点:在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性.
5.其他谱线:除了巴耳末系,氢原子光谱在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式.
三、经典理论的困难
1.核式结构模型的成就:正确地指出了原子核的存在,很好地解释了α粒子散射实验.
2.经典理论的困难:经典物理学既无法解释原子的稳定性,又无法解释原子光谱的分立线状谱.
四、玻尔原子理论的基本假设
1.轨道量子化
(1)原子中的电子在库仑引力的作用下,绕原子核做圆周运动.
(2)电子运行轨道的半径不是任意的,也就是说电子的轨道是量子化的(填“连续变化”或“量子化”).
(3)电子在这些轨道上绕核的运动是稳定的,不产生电磁辐射.
2.能量量子化
(1)不同轨道对应不同的状态,在这些状态中,尽管电子做变速运动,却不辐射能量,因此这些状态是稳定的,原子在不同状态有不同的能量,所以原子的能量也是量子化的.
(2)基态:原子最低的能量状态称为基态,对应的电子在离核最近的轨道上运动,氢原子基态能量E1=-13.6 eV.
(3)激发态:除基态之外的其他能量状态称为激发态,对应的电子在离核较远的轨道上运动.
氢原子各能级的关系为:En=E1(E1=-13.6 eV,n=1,2,3,…)
3.跃迁
原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两种定态的能量差决定,即高能级Em低能级En.
4.频率条件
当电子从能量较高的定态轨道(其能量记为En)跃迁到能量较低的定态轨道(能量记为Em,m<n)时,会放出能量为hν的光子,该光子的能量hν=En-Em,该式称为频率条件,又称辐射条件.
5.原子的能量及变化规律
(1)原子的能量:En=Ekn+Epn.
(2)电子绕氢原子核运动时:k=m,
故Ekn=mvn2=
电子轨道半径越大,电子绕核运动的动能越小.
(3)当电子的轨道半径增大时,库仑引力做负功,原子的电势能增大,反之,电势能减小.
(4)电子的轨道半径增大时,说明原子吸收了能量,从能量较低的轨道跃迁到了能量较高的轨道.即电子轨道半径越大,原子的能量En越大.
一、单选题
1.下列叙述中符合物理学史实的是(  )
A.汤姆生通过对阴极射线的实验研究,发现了电子和质子
B.卢瑟福通过研究α粒子的散射实验,发现了原子核内部有质子和中子
C.普朗克通过分析氢原子光谱,提出了“光子”学说
D.玻尔提出的氢原子模型,能够成功解释氢原子的光谱形成原因
2.下列实验事实与原子结构模型建立的关系正确的是(  )
A.电子的发现:道尔顿的原子结构模型
B.α粒子散射:卢瑟福原子结构模型
C.α粒子散射:玻尔原子结构模型
D.氢原子光谱:卢瑟福原子结构模型
3.有关原子结构,下列说法正确的是 (  )
A.玻尔原子模型能很好地解释氢原子光谱的实验规律
B.卢瑟福核式结构模型可以很好地解释原子的稳定性
C.卢瑟福的α粒子散射实验表明原子内部存在带负电的电子
D.卢瑟福的α粒子散射实验否定了玻尔原子模型
4.下列叙述中符合物理学史的有:( )
A.汤姆孙通过研究阴极射线实验,发现了电子和质子的存在
B.卢瑟福通过对粒子散射实验现象的分析,证实了原子是可以再分的
C.巴尔末根据氢原子光谱分析,总结出了氢原子光谱可见光区波长公式
D.玻尔提出的原子模型,彻底否定了卢瑟福的原子核式结构学说
二、多选题
5.在卢瑟福原子模型基础上加上普朗克的量子概念后,1913年由玻尔提出玻尔能级理论,玻尔理论不但回答了氢原子稳定存在的原因,而且还成功地解释了氢原子和类氢原子的光谱现象.如图为氢原子的能级图,则下列说法中正确的是
A.由能级图可知某一氢原子由第3能级跃迁到第1能级将辐射出能量为12.09eV的光子
B.玻尔理论采用了量子化的思想,适用于所有原子
C.如果用大量动能是11eV的电子轰击大量氢原子,氢原子不会发生跃迁
D.某一个处于第3能级的氢原子向基态跃迁时,可能释放2种频率的光子
6.下列说法正确的是( )
E.玻尔将量子观念引入原子领域,其理论能够解释氢原子光谱的特征
A.玻尔对氢原子光谱的研究导致原子的核式结构模型的建立
B.可利用某些物质在紫外线照射下发出荧光来设计防伪措施
C.天然放射现象中产生的射线都能在电场或磁场中发生偏转
D.观察者与波源互相远离时接收到波的频率与波源频率不同
三、填空题
7.玻尔氢原子模型成功解释了氢原子光谱的实验规律,氢原子能级图如图所示.当氢原子从的能级跃迁到的能级时,辐射出频率为______的光子,用该频率的光照射逸出功为的钾表面,产生的光电子的最大初动能为______.(电子电量,普朗克常量)
8.根据玻尔理论,氢原子的能级公式为 (为量子数,为基态能级且大小已知),一个氢原子从的激发态直接跃迁到基态,发射一个光子的频率是________.(已知普朗克常量为)
参考答案
1.D
【详解】
A.汤姆生通过对阴极射线的实验研究,发现了电子,卢瑟福发现了质子,选项A错误;
B.卢瑟福通过研究α粒子的散射实验,确定了原子的核式结构理论,选项B错误;
C.普朗克提出了量子理论,为了解释光电效应现象,爱因斯坦提出了光子说,故C错误;
D.玻尔提出的氢原子模型,能够成功解释氢原子的光谱形成原因,选项D正确。
故选D。
2.B
【解析】道尔顿的原子结构模型是道尔顿通过对大气的物理性质进行研究而提出的,故A错误;卢瑟福原子结构模型是通过α粒子散射实验提出的,卢瑟福提出原子的核式结构模型,这一模型建立的基础是α粒子散射实验,故B正确C错误;波尔提出电子在一定轨道上运动的原子结构模型,D错误.
3.A
【解析】
【详解】
A.玻尔提出的原子模型成功地说明了原子的稳定性和氢原子光谱的实验规律,故A正确;
B.卢瑟福核式结构模型不能解释原子的稳定性,故B错误;
CD.卢瑟福的α粒子散射实验表明原子具有核式结构,否定了汤姆孙关于原子结构的“西瓜模型”,故CD错误.
故选A.
4.C
【解析】
本题考查的是对物理学史的掌握情况,汤姆孙通过研究阴极射线实验,发现了电子的存在,A错误,卢瑟福通过对粒子散射实验现象的分析,证实了原子具有核式结构,B错误;巴尔末根据氢原子光谱分析,总结出了氢原子光谱可见光区波长公式,C正确;玻尔提出的原子模型,并没有否定卢瑟福的原子核式结构学说,D正确;
5.AD
【详解】
A.由能级图可知某一氢原子由第3能级跃迁到第1能级将辐射出能量为(-1.51eV)-(-13.6eV)=12.09eV的光子,选项A正确;
B.玻尔理论采用了量子化的思想,但是只适用于氢原子,不适应所有原子,选项B错误;
C.用动能11eV的外来电子轰击处于基态的氢原子,氢原子可以吸收电子的一部分的能量,如吸收△E=-13.6-(-3.4)=-10.2eV的能量跃迁到n=2的能级,故C错误;
D.某一个处于第3能级的氢原子向基态跃迁时,可能的跃迁有:3→2和2→1,则最多释放2种频率的光子,选项D正确;
故选AD.
6.BDE
【解析】
试题分析:卢瑟福α粒子散射实验提出原子核式结构模型,紫外线可以使荧光物质发出荧光,γ射线不能在电场或磁场中发生偏转,多普勒效应是由于观察者和波源间位置的变化而产生的.
解:A、卢瑟福通过α粒子散射实验建立了原子核式结构模型,故A错误;
B、紫外线可以使荧光物质发出荧光,利用这一特性对钞票或商标进行有效的防伪措施,故B正确;
C、天然放射现象中产生的γ射线不能在电场或磁场中发生偏转,故C错误;
D、当波源与观察者有相对运动时,如果二者相互接近,间距变小,观察者接收的频率增大,如果二者远离,间距变大,观察者接收的频率减小.故D正确.
E、玻尔将量子观念引入原子领域,其理论能够解释氢原子光谱的特征,故E正确;
故选BDE.
【点评】本题考查了原子核式结构模型、紫外线的特征,多普勒效应等知识点,属于熟记内容,难度不大,属于基础题.
7. 0.3
【详解】
[1].根据,可求得光子的频率;
[2].根据可求得光电子的最大初动能.
8.
【解析】
基态的能量为E1,n=3激发态对应的能量为:E3=E1/9,
氢原子发射的光子能量为:△E=E3 E1==hν,所以ν=.
试卷第1页,总3页第四章 原子结构与波粒二象性
2 氢原子光谱和玻尔的原子模型
第2课时 玻尔理论对氢光谱的解释 氢原子能级跃迁
1.能用玻尔理论解释氢原子光谱.了解玻尔理论的不足之处和原因.
2.进一步加深对玻尔理论的理解,会计算原子跃迁过程中吸收或放出光子的能量.
3.知道使氢原子电离的方式并能进行有关计算.
一、玻尔理论对氢光谱的解释
1.氢原子能级图(如图1所示)
图1
2.解释巴耳末公式
巴耳末公式中的正整数n和2正好代表能级跃迁之前和跃迁之后所处的定态轨道的量子数n和2.
3.解释气体导电发光
通常情况下,原子处于基态,非常稳定,气体放电管中的原子受到高速运动的电子的撞击,有可能向上跃迁到激发态,处于激发态的原子是不稳定的,会自发地向能量较低的能级跃迁,放出光子,最终回到基态.
4.解释氢原子光谱的不连续性
原子从较高的能级向低能级跃迁时放出的光子的能量等于前后两个能级之差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线.
5.解释不同原子具有不同的特征谱线
不同的原子具有不同的结构,能级各不相同,因此辐射(或吸收)的光子频率也不相同.
6.能级跃迁:处于激发态的原子是不稳定的,它会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.所以一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为N=C=.
7.光子的发射:原子由高能级向低能级跃迁时以光子的形式放出能量,发射光子的频率由下式决定.
hν=Em-En(Em、En是始末两个能级且m>n),
能级差越大,发射光子的频率就越高.
8.光子的吸收:原子只能吸收一些特定频率的光子,原子吸收光子后会从较低能级向较高能级跃迁,吸收光子的能量仍满足hν=Em-En(m>n).
二、玻尔理论的局限性
1.成功之处
玻尔的原子理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱的实验规律.
2.局限性
保留了经典粒子的观念,仍然把电子的运动看作经典力学描述下的轨道运动.
3.电子云
原子中的电子没有确定的坐标值,我们只能描述某时刻电子在某个位置出现概率的多少,把电子这种概率分布用疏密不同的点表示时,这种图像就像云雾一样分布在原子核周围,故称电子云.
三、能级跃迁的几种情况的对比
1.自发跃迁与受激跃迁的比较
(1)自发跃迁:
①由高能级到低能级,由远轨道到近轨道.
②释放能量,放出光子(发光):hν=E初-E末.
③大量处于激发态为n能级的原子可能的光谱线条数:.
(2)受激跃迁:
①由低能级到高能级,由近轨道到远轨道.
②吸收能量
2.使原子能级跃迁的两种粒子——光子与实物粒子
(1)原子若是吸收光子的能量而被激发,则光子的能量必须等于两能级的能量差,否则不被吸收,不存在激发到n能级时能量有余,而激发到n+1能级时能量不足,则可激发到n能级的问题.
(2)原子还可吸收外来实物粒子(例如,自由电子)的能量而被激发,由于实物粒子的动能可部分地被原子吸收,所以只要入射粒子的能量大于或等于两能级的差值,就可使原子发生能级跃迁.
3.一个氢原子跃迁和一群氢原子跃迁的区别
(1)一个氢原子跃迁的情况分析
图2
①确定氢原子所处的能级,画出能级图.
②根据跃迁原理,画出氢原子向低能级跃迁的可能情况示意图.
例如:一个氢原子最初处于n=4激发态,它向低能级跃迁时,有4种可能情况,如图2,情形Ⅰ中只有一种频率的光子,其他情形为:情形Ⅱ中两种,情形Ⅲ中两种,情形Ⅳ中三种.
注意:上述四种情形中只能出现一种,不可能两种或多种情形同时存在.
(2)一群氢原子跃迁问题的计算
①确定氢原子所处激发态的能级,画出跃迁示意图.
②运用归纳法,根据数学公式N=C=确定跃迁时辐射出几种不同频率的光子.
③根据跃迁能量公式hν=Em-En(m>n)分别计算出各种光子的频率.
四、电离
1.电离:指电子获得能量后脱离原子核的束缚成为自由电子的现象.
2.电离能是氢原子从某一状态跃迁到n=∞时所需吸收的能量,其数值等于氢原子处于各定态时的能级值的绝对值.如基态氢原子的电离能是13.6 eV,氢原子处于n=2激发态时的电离能为3.4 eV.
3.氢原子吸收光子发生跃迁和电离的区别
(1)氢原子吸收光子从低能级向高能级跃迁时,光子的能量必须等于两能级的能级差,即hν=Em-En(m>n).
(2)氢原子吸收光子发生电离时,光子的能量大于或等于氢原子的电离能就可以.
如基态氢原子的电离能为13.6 eV,只要能量大于或等于13.6 eV的光子都能被基态的氢原子吸收而发生电离,只不过入射光子的能量越大,氢原子电离后产生的自由电子的动能越大.
一、单选题
1.关于物质的波粒二象性,下列说法中不正确的是(  )
A.不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性
B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道
C.宏观物体的运动有特定的轨道,所以宏观物体不具有波粒二象性
D.康普顿效应说明了光具有粒子性
2.关于波粒二象性,下列说法正确的是( )
A.有的光只是粒子,有的光只是波
B.康普顿效应表明光是粒子,并具有动量
C.实物的运动有特定的轨道,所以实物不具有波粒二象性
D.德布罗意指出微观粒子的动量越大,其对应的波长就越长
3.下面能够证明光具有波粒二象性的现象是(  )
A.光电效应和康普顿效应 B.光的干涉和康普顿效应
C.光的衍射和光的干涉 D.光的散射和光电效应
4.波粒二象性是微观世界的基本特征,以下说法正确的是(  )
A.光电效应和康普顿效应都揭示了光的波动性
B.热中子束射到晶体上产生的衍射图样说明中子具有粒子性
C.光的波粒二象性表明一束传播的光,有的光是波,有的光是粒子
D.速度相同的质子和电子相比,电子的波动性更为明显
二、多选题
5.能说明光具有波粒二象性的实验是(  )
A.光的干涉和衍射
B.光的干涉和光电效应
C.光的衍射和康普顿效应
D.光电效应和康普顿效应
6.关于物质的波粒二象性,下列说法正确的是
A.光的波长越短,光子的能量越大,光的粒子性越明显
B.不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性
C.光电效应现象揭示了光的粒子性
D.实物的运动有特定的轨道,所以实物不具有波粒二象性
三、填空题
7.用极微弱的可见光做双缝干涉实验,随着时间的增加,在屏上先后出现如图A、B、C所示的图像,该实验现象说明:个别光子的行为往往显示出__________,大量光子的行为往往显示出__________ (选填“粒子性”、“波动性”、或“波粒二象性”) 。
8.在验证光的波粒二象性的实验中,采用很微弱的光流,使光子一个一个地通过狭缝.如曝光时间不太长,底片上出现___________;如时间足够长,底片上将会显示___________.(无规则分布的点子,规则的衍射条纹)
参考答案
1.C
【详解】
AC.德布罗意在爱因斯坦光子说的基础上提出物质波的概念,认为一切运动的物体都具有波粒二象性,故A正确,C错误;
B.物质具有波动性,运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道,故B正确;
D.康普顿效应说明了光具有粒子性,故D正确.
2.B
【详解】
A.光既有波动性,又具有微粒性,并不是有的光只是粒子,有的光只是波,选项A错误;
B.康普顿效应表明光是粒子,并具有动量,选项B正确;
C.德布罗意在爱因斯坦光子说的基础上提出物质波的概念,认为一切运动的物体都具有波粒二象性,选项C错误;
D.根据德布罗意公式可知,微观粒子的动量越大,其对应的波长就越短,选项D错误。
故选B。
3.B
【详解】
光的干涉和衍射是波特有的现象,不能说明光具有粒子性,而光电效应和康普顿效应说明光具有粒子性。只有选项B,既说明光具有波动性,又说明光具有粒子性,其他选项只说明光具有粒子性,或只说明光具有波动性,故B正确,ACD错误。
故选B。
4.D
【详解】
A.光电效应和康普顿效应都揭示了光的粒子性,故A错误;
B.热中子束射到晶体上产生的衍射图样说明中子具有波动性,衍射是波的特征,故B错误;
C.光都具有波粒二象性,光同时具有波和粒子的特性,并非有的光是波,有的光是粒子,故C错误;
D.质子和电子都有波动性,由,可知,相同速度的电子和质子,由于质子的质量较大,所以其物质波波长较短,所以电子的波动性更为明显。故D正确。
故选D。
5.BC
【详解】
光的干涉和光的衍射只说明光具有波动性,光电效应和康普顿效应只说明光具有粒子性。
故选BC。
6.ABC
【解析】
据可知光的波长越短则频率越大,据可知光能量越大,A正确;波粒二象性是微观世界特有的规律,一切运动的微粒都具有波粒二象性,B正确;光电效应现象说明光具有粒子性,C正确;由德布罗意理论知,宏观物体的德布罗意波的波长太小,实际很难观察到波动性,但仍具有波粒二象性,D错误.故选ABC
7.粒子性 波动性
【详解】
[1][2].少量的光子所能到达的位置不能确定,即每次只照亮一个位置,这表明光是一份一份传播的,说明光具有粒子性,单个光子所到达哪个位置是个概率问题;只有当大量光子却表现出波动性,即光子到达哪个位置是一个概率问题,故此实验表明了光是一种概率波.
8.无规则分布的点子 规则的衍射条纹
【详解】
使光子一个一个地通过单缝,根据爱因斯坦的“光子说”可知,单个光子表现为粒子性,而大量光子表现为波动性,故曝光时间不太长时,底片上只能出现一些不规则的点子;如果时间足够长,底片上中央到达的机会最多,其它地方机会较少,因此会出现衍射图样.
试卷第1页,总3页