2021-2022学年苏科版八年级数学下册《第9章中心对称图形—平行四边形》
单元达标测试题(附答案)
一.选择题(共8小题,满分40分)
1.要使四边形ABCD是平行四边形,则∠A:∠B:∠C:∠D可能为( )
A.2:3:6:7 B.3:4:5:6 C.3:3:5:5 D.4:5:4:5
2.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是( )
A.邻边不等的矩形 B.等腰梯形
C.有一个角是锐角的菱形 D.正方形
3.如图,在三角形ABC中,AB=AC,BC=6,三角形DEF的周长是7,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,则AF=( )
A. B. C. D.7
4.两张全等的矩形纸片ABCD,AECF按如图方式交叉叠放在一起,AB=AF,AE=BC.若AB=1,BC=3,则图中重叠(阴影)部分的面积为( )
A.2 B. C. D.
5.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则 ABCD的面积是( )
A.30 B.36 C.54 D.72
6.如图,ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,∠DCE=30°,若OE=,则正方形的面积为( )
A.5 B.4 C.3 D.2
7.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为( )
A.2 B.3 C.4 D.5
8.如图,正方形ABCD中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H作HG⊥BD于G.则下列结论:
①AF=FH;
②∠HAE=45°;
③BD=2FG;
④△CEH的周长为8.其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
二.填空题(共8小题,满分40分)
9.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2= .
10.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 .
11.已知正方形ABCD的边长为4,点E,F分别在AD,DC上,AE=DF=1,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为 .
12.如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC= °.
13.如图,菱形ABCD中,E、F分别是BC、CD的中点,过点E作EG⊥AD于G,连接GF.若∠A=80°,则∠DGF的度数为 .
14.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是 .
15.如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S,S3,若S1+S3=10,则S= .
16.如图所示,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以AE为边作第三个正方形AEGM,…已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3,…Sn(n为正整数),那么第8个正方形面积S8= .
三.解答题(共5小题,满分40分)
17.如图,在 ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
18.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.
(1)求证:四边形AECD是菱形;
(2)若AB=6,BC=10,求EF的长.
19.如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.
(1)若DG=2,求证:四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积.
20.已知:平行四边形ABCD中,E、F是BC、AB的中点,DE、DF分别交AB、CB的延长线于H、G;
(1)求证:BH=AB;
(2)若四边形ABCD为菱形,试判断∠G与∠H的大小,并证明你的结论.
21.如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB=PE,连接PD,O为AC中点.
(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;
(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;
(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.
参考答案
一.选择题(共8小题,满分40分)
1.解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.
故选:D.
2.解:如图:此三角形可拼成如图三种形状,
(1)为矩形,∵有一个角为60°,则另一个角为30°,∴此矩形为邻边不等的矩形;
(2)为菱形,有两个角为60°;
(3)为等腰梯形.
故选:D.
3.解:∵AF⊥BC,BE⊥AC,D是AB的中点,
∴DE=DF=AB,
∵AB=AC,AF⊥BC,
∴点F是BC的中点,∴BF=FC=3,
∵BE⊥AC,
∴EF=BC=3,
∴△DEF的周长=DE+DF+EF=AB+3=7,
∴AB=4,
由勾股定理知 AF==,
故选:B.
4.解:设BC交AE于G,AD交CF于H,如图所示:
∵四边形ABCD、四边形AECF是全等的矩形,
∴AB=CE,∠B=∠E=90°,AD∥BC,AE∥CF,
∴四边形AGCH是平行四边形,
在△ABG和△CEG中,,
∴△ABG≌△CEG(AAS),
∴AG=CG,
∴四边形AGCH是菱形,
设AG=CG=x,则BG=BC﹣CG=3﹣x,
在Rt△ABG中,由勾股定理得:12+(3﹣x)2=x2,
解得:x=,
∴CG=,
∴菱形AGCH的面积=CG×AB=×1=,
即图中重叠(阴影)部分的面积为;
故选:C.
5.解:作DE∥AM,交BC的延长线于E,则四边形ADEM是平行四边形,
∴DE=AM=9,ME=AD=10,
又由题意可得,BM=BC=AD=5,则BE=15,
在△BDE中,∵BD2+DE2=144+81=225=BE2,
∴△BDE是直角三角形,且∠BDE=90°,
过D作DF⊥BE于F,
则DF==,
∴S ABCD=BC FD=10×=72.
故选:D.
6.解:如图,过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,
∵∠CED=90°,
∴四边形OMEN是矩形,
∴∠MON=90°,
∵∠COM+∠DOM=∠DON+∠DOM,
∴∠COM=∠DON,
∵四边形ABCD是正方形,
∴OC=OD,
在△COM和△DON中,
,
∴△COM≌△DON(AAS),
∴OM=ON,
∴四边形OMEN是正方形,
设正方形ABCD的边长为2a,则OC=OD=×2a=a,
∵∠CED=90°,∠DCE=30°,
∴DE=CD=a,
由勾股定理得,CE===a,
∴四边形OCED的面积=a a+ (a) (a)=×()2,
解得a2=1,
所以,正方形ABCD的面积=(2a)2=4a2=4×1=4.
故选:B.
或把△ODE绕O顺时针旋转90度到△OCM,再证明一下C、E、M三点共线,之后易得△OEM为等腰直角三角形,就可以算出EM,设DE=x,则CM=x,CE=根号3x,然后列方程,可以得到DE,继而得到DE.
7.解:根据作图,AC=BC=OA,
∵OA=OB,
∴OA=OB=BC=AC,
∴四边形OACB是菱形,
∵AB=2cm,四边形OACB的面积为4cm2,
∴AB OC=×2×OC=4,
解得OC=4cm.
故选:C.
8.解:①连接FC,延长HF交AD于点L,如图1,
∵BD为正方形ABCD的对角线,
∴∠ADB=∠CDF=45°.
∵AD=CD,DF=DF,
∴△ADF≌△CDF(SAS).
∴FC=AF,∠ECF=∠DAF.
∵∠ALH+∠LAF=90°,
∴∠LHC+∠DAF=90°.
∵∠ECF=∠DAF,
∴∠FHC=∠FCH,
∴FH=FC.
∴FH=AF.
②∵FH⊥AE,FH=AF,
∴∠HAE=45°.
③连接AC交BD于点O,如图2,可知:BD=2OA,
∵∠AFO+∠GFH=∠GHF+∠GFH,
∴∠AFO=∠GHF.
∵AF=HF,∠AOF=∠FGH=90°,
∴△AOF≌△FGH(ASA).
∴OA=GF.
∵BD=2OA,
∴BD=2FG.
④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,如图3,则:LI=HC,
∵HL⊥AE,CI∥HL,
∴AE⊥CI,
∴∠DIC+∠EAD=90°,
∵∠EAD+∠AED=90°,
∴∠DIC=∠AED,
∵ED⊥AM,AD=DM,
∴EA=EM,
∴∠AED=∠MED,
∴∠DIC=∠DEM,
∴∠CIM=∠CEM,
∵CM=MC,∠ECM=∠CMI=45°,
∴△MEC≌△CIM(AAS),可得:CE=IM,
同理,可得:AL=HE,
∴HE+HC+EC=AL+LI+IM=AM=8.
∴△CEH的周长为8.
故①②③④结论都正确.
故选:D.
二.填空题(共8小题,满分40分)
9.解:∵四边形ABCD是矩形,
∴∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,
∴OB=OC,OB=OA,
∴∠OCB=∠OBC,
∵AB=BE,∠ABE=90°,
∴∠BAE=∠AEB=45°,
∵∠1=15°,
∴∠OCB=∠AEB﹣∠EAC=45°﹣15°=30°,
∴∠OBC=∠OCB=30°,
∴∠AOB=30°+30°=60°,
∵OA=OB,
∴△AOB是等边三角形,
∴AB=OB,
∵∠BAE=∠AEB=45°,
∴AB=BE,
∴OB=BE,
∴∠OEB=∠EOB,
∵∠OBE=30°,∠OBE+∠OEB+∠BEO=180°,
∴∠OEB=75°,
∵∠AEB=45°,
∴∠2=∠OEB﹣∠AEB=30°,
故答案为:30°.
10.解:如图,连接BD交AC于点O,
∵四边形ABCD为正方形,
∴BD⊥AC,OD=OB=OA=OC,
∵AE=CF=2,
∴OA﹣AE=OC﹣CF,即OE=OF,
∴四边形BEDF为平行四边形,且BD⊥EF,
∴四边形BEDF为菱形,
∴DE=DF=BE=BF,
∵AC=BD=8,OE=OF==2,
由勾股定理得:DE===2,
∴四边形BEDF的周长=4DE=4×=8,
故答案为:8.
11.解:∵四边形ABCD为正方形,
∴∠BAE=∠D=90°,AB=AD,
在△ABE和△DAF中,
∵,
∴△ABE≌△DAF(SAS),
∴∠ABE=∠DAF,
∵∠ABE+∠BEA=90°,
∴∠DAF+∠BEA=90°,
∴∠AGE=∠BGF=90°,
∵点H为BF的中点,
∴GH=BF,
∵BC=4、CF=CD﹣DF=4﹣1=3,
∴BF==5,
∴GH=BF=,
故答案为:.
12.解:∵菱形ABCD中,∠BAD=120°
∴AB=BC=CD=AD,∠BCD=120°,∠ACB=∠ACD=∠BCD=60°,
∴△ACD是等边三角形
∵CE⊥AD
∴∠ACE=∠ACD=30°
∴∠BCE=∠ACB+∠ACE=90°
∵CE=BC
∴∠E=∠CBE=45°
∴∠EFC=180°﹣∠E﹣∠ACE=180°﹣45°﹣30°=105°
故答案为:105°
13.解:如图,延长AD、EF相交于点H,
∵F是CD的中点,
∴CF=DF,
∵菱形对边AD∥BC,
∴∠H=∠CEF,
在△CEF和△DHF中,
,
∴△CEF≌△DHF(AAS),
∴EF=FH,
∵EG⊥AD,
∴GF=FH,
∴∠DGF=∠H,
∵四边形ABCD是菱形,
∴∠C=∠A=80°,
∵菱形ABCD中,E、F分别是BC、CD的中点,
∴CE=CF,
在△CEF中,∠CEF=(180°﹣80°)=50°,
∴∠DGF=∠H=∠CEF=50°.
故答案为:50°.
14.解:∵四边形ABCD为正方形,
∴∠D=∠ABC=90°,AD=AB,
∴∠ABE=∠D=90°,
∵∠EAF=90°,
∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,
∴∠DAF=∠BAE,
在△AEB和△AFD中,
,
∴△AEB≌△AFD(ASA),
∴S△AEB=S△AFD,
∴它们都加上四边形ABCF的面积,
可得到四边形AECF的面积=正方形的面积=16.
故答案为:16.
15.解:根据正三角形的性质,∠ABC=∠HFG=∠DCE=60°,
∴AB∥HF∥DC∥GN,
设AC与FH交于P,CD与HG交于Q,
∴△PFC、△QCG和△NGE是正三角形,
∵F、G分别是BC、CE的中点,
∴BF=MF=AC=BC,CP=PF=AB=BC
∴CP=MF,CQ=BC,QG=GC=CQ=AB,
∴S1=S,S3=2S,
∵S1+S3=10,
∴S+2S=10,
∴S=4.
故答案为:4.
16.解:根据题意可得:第n个正方形的边长是第(n﹣1)个的倍;故面积是第(n﹣1)个的2倍,已知第一个面积为1;则那么第8个正方形面积S8=27=128.
故答案为128.
三.解答题(共5小题,满分40分)
17.(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四边形BFDE是平行四边形.
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠DFA=∠FAB.
在Rt△BCF中,由勾股定理,得
BC==5,
∴AD=BC=DF=5,
∴∠DAF=∠DFA,
∴∠DAF=∠FAB,
即AF平分∠DAB.
18.证明:(1)∵AD∥BC,AE∥DC,
∴四边形AECD是平行四边形,
∵∠BAC=90°,E是BC的中点,
∴AE=CE=BC,
∴四边形AECD是菱形;
(2)过A作AH⊥BC于点H,
∵∠BAC=90°,AB=6,BC=10,
∴AC=,
∵,
∴AH=,
∵点E是BC的中点,BC=10,四边形AECD是菱形,
∴CD=CE=5,
∵S AECD=CE AH=CD EF,
∴EF=AH=.
法二:连接ED交AC于O,
由题意得:AC=8,计算得ED=6.
.
计算得5EF=6×4,
EF=.
19.(1)证明:∵四边形EFGH为菱形,
∴HG=EH,
∵AH=2,DG=2,
∴DG=AH,
在Rt△DHG和△AEH中,
,
∴Rt△DHG≌△AEH,
∴∠DHG=∠AEH,
∵∠AEH+∠AHE=90°,
∴∠DHG+∠AHE=90°,
∴∠GHE=90°,
∵四边形EFGH为菱形,
∴四边形EFGH为正方形;
(2)解:作FQ⊥CD于Q,连接GE,如图,
∵四边形ABCD为矩形,
∴AB∥CD,
∴∠AEG=∠QGE,即∠AEH+∠HEG=∠QGF+∠FGE,
∵四边形EFGH为菱形,
∴HE=GF,HE∥GF,
∴∠HEG=∠FGE,
∴∠AEH=∠QGF,
在△AEH和△QGF中
,
∴△AEH≌△QGF,
∴AH=QF=2,
∵DG=6,CD=8,
∴CG=2,
∴△FCG的面积=CG FQ=×2×2=2.
20.解:(1)证明:∵四边形ABCD是平行四边形,
∴DC=AB,DC∥AB,
∴∠C=∠EBH,∠CDE=∠H,
又∵E是CB的中点,
∴CE=BE,
在△CDE和△BHE中
,
∴△CDE≌△BHE,
∴BH=DC,
∴BH=AB.
(2)∠G=∠H,
证明:∵四边形ABCD是平行四边形,
∴AD∥CB,
∴∠ADF=∠G,
∵四边形ABCD是菱形,
∴AD=DC=CB=AB,∠A=∠C,
∵E、F分别是CB、AB的中点,
∴AF=CE,
在△ADF和△CDE中
,
∴△ADF≌△CDE,
∴∠CDE=∠ADF,
∴∠H=∠G.
21.解:(1)当点P在线段AO上时,
在△ABP和△ADP中,
∴△ABP≌△ADP,
∴BP=DP,
∵PB=PE,
∴PE=PD,
过点P做PM⊥CD,于点M,作PN⊥BC,于点N,
∵PB=PE,PN⊥BE,
∴BN=NE,
∵BN=DM,
∴DM=NE,
在Rt△PNE与Rt△PMD中,
∵PD=PE,NE=DM,
∴Rt△PNE≌Rt△PMD,
∴∠DPM=∠EPN,
∵∠MPN=90°,
∴∠DPE=90°,
故PE⊥PD,
PE与PD的数量关系和位置关系分别为:PE=PD,PE⊥PD;
(2)∵四边形ABCD是正方形,AC为对角线,
∴BA=DA,∠BAP=∠DAP=45°,
∵PA=PA,
∴△BAP≌△DAP(SAS),
∴PB=PD,
又∵PB=PE,
∴PE=PD.
(i)当点E与点C重合时,点P恰好在AC中点处,此时,PE⊥PD.
(ii)当点E在BC的延长线上时,如图.
∵△ADP≌△ABP,
∴∠ABP=∠ADP,
∴∠CDP=∠CBP,
∵BP=PE,
∴∠CBP=∠PEC,
∴∠PEC=∠PDC,
∵∠1=∠2,
∴∠DPE=∠DCE=90°,
∴PE⊥PD.
综合(i)(ii),PE⊥PD;
(3)同理即可得出:PE⊥PD,PD=PE.