19.1矩形的性质教案设计
一、学习目标确定的依据
1、课程标准
掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.会利用矩形的性质正确解决相关问题
2、教材分析
本节课是初中数学华师大版八年级下册19章第一部分矩形的第一课时,是在学生学习平行四边形的基础上学习的,也是学习下节课矩形的判定的基础,承上启下.
3、中招考点
本节内容结合菱形及正方形的性质与判定是中考的重要考点之一,题型以解答题为主。
4、学情分析
学生已经学行四边形的性质及判定,这些内容为学生学习本节课打下坚实的基础,同时八年级学生已经具有了一定的类比,分析,归纳能力,但是思维严谨性仍相对薄弱,需有老师引导其由感性认识发展到理性认识。
学习目标
1.掌握矩形的定义及性质;(重点)
2.理解矩形和平行四边形的区别;
3.会应用矩形的性质解决相关证明、应用题。(难点)
教学过程
温故知新
1.1平行四边形的定义:
1.2平行四边形的性质:
1.3平行四边形的判定定理:
(教师引导学生回顾知识点,并作答)
情境创设
我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说有特殊情况即特殊的平行四边形,也就是这堂课我们就来研究一种特殊的平行四边形——矩形。
概念导入
3.1矩形的定义
3.2矩形的性质
3.3特殊性质证明:
3.4比一比
(类比理解记忆平行四边形和矩形的关系)
边 角 对角线 对称性
平行四边形
矩形
3.5小试牛刀
练习:
3.6再探新知
直角三角形斜边上中线的性质 :直角三角形斜边上的中线等于斜边的一半。
例题讲解
例1:教师详细讲解并展示解题过程
例2:师生共同完成
练习
营中热身、营中寻宝
学以致用
我的收获
本节课主要学习了……
课后作业
已知△ABC是Rt△,∠ABC=90°,BD是斜边AC上的中线。
(1) 若BD= 3㎝,则AC= ㎝;
(2) 若∠C=30°,AB=5㎝,则AC= ㎝,BD= ㎝。
2、如果矩形的一条对角线的长为8 cm,两条对角线的一个交角为120°,求矩形的边长?
3、练习题:第2题、第3题(教材第100页 )