27.2.2相似三角形应用举例

文档属性

名称 27.2.2相似三角形应用举例
格式 zip
文件大小 1.4MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2012-12-28 13:42:57

图片预览

文档简介

课件26张PPT。乐山大佛新课导入世界上最高的树
—— 红杉世界上最高的楼
——台北101大楼怎样测量这些非常高大物体的高度?世界上最宽的河
——亚马孙河怎样测量河宽?27.2.2 相似三角形应用举例1、在同一时刻物体的高度与它的影长成正比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?解:设高楼的高度为X米,则答:楼高36米.体验:2.如图,铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高 m。 1m16m0.5m8给我一个支点我可以撬起整个地球!---阿基米德?3.数学兴趣小组测校内一棵树高,有以下两种方法:
方法一:如图,把镜子放在离树(AB)8米点E处,然后沿着直线BE后退到D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.8米,观察者目高CD=1.6米;CDEABABC3.数学兴趣小组测校内一棵树高,有以下两种方法:
方法二:如图,把长为2.40米的标杆CD直立在地面上,量出树的影长为2.80米,标杆影长为1.47米。分别根据上述两种不同方
法求出树高(精确到0.1M)请你自己写出求解过程,
并与同伴探讨,还有其
他测量树高的方法吗?FDCEBA 胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低 。 小小旅行家:走近金字塔例1 据史料记者,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图,如果木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度BO.解:太阳光是平行光线,由此∠BAO=∠EDF,又∠AOB=∠DFE=90°∴ △ABO∽△DEF.因此金字塔的高为134m.物1高 :物2高 = 影1长 :影2长测高的方法 测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成正比例”的原理解决。 AFEBO┐┐还可以有其他方法测量吗?一题多解=△ABO∽△AEFOB =平面镜例2如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在对岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.
如果测得QS=45m,ST=90m,QR=60m,求河的宽度PQ.解:∵ ∠PQR=∠PST=90°,∠P=∠P,PQ×90=(PQ+45)×60解得PQ=90.PQRSTab∴ △PQR∽△PST.因此河宽大约为90m你还有其他的方法吗?怎样测量河的宽度ADCEB方法二:我们可以在河岸选定一个目标作为点A,再在河的对岸选点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,确定BC和AE的交点D.?此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.仍然可以用三角形相似求得河大约为90米宽(同学们自己动手做一做)。测距的方法 测量不能到达两点间的距离,常构造相似三角形求解。 例5 已知左、右并排的两棵大树的高分别是AB=6cm和CD=12m,两树的根部的距离BD=5m.一个身高1.6m的人沿着正对这两棵树的一条水平直路 l 从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?分析:如图,设观察者眼睛的位置为点F,画出观察者的水平视线FG,它交AB、CD于点H、K.视线FA、FG的夹角∠CFK是观察点C时的仰角.由于树的遮挡,区域1 和11都在观察者看不到的区域(盲区)之内.HK仰角视线水平线AC解:如图,假设观察者从左向右走到点E时,他的眼睛的位置点F与两棵树顶端点A、C恰在一条直线上.由题意可知,AB⊥l,CD⊥l∴ AB∥CD,△AFH∽△CFK即解得 FH=8由此可知,如果观察者继续前进,即他与左边的树的距离小于8m时,由于这棵树的遮挡,右边树的顶端点C在观察者的盲区之内,观察者看不到它.1、如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为    米.巩固提高:2.小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树在一个院子内,影子不全落在地面上,有一部分影子在墙上,如图1,他先测得留在墙上的影高1.2m,又测得墙内地面部分的影长2.7m,你能帮组他求得的树高是多少吗? 图23、如图,已知零件的外径a为25cm ,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=3,且量得CD=7cm,求厚度x。O(分析:如图,要想求厚度x,根据条件可知,首先得求出内孔直径AB。而在图中可构造出相似形,通过相似形的性质,从而求出AB的长度。)4.为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了4米(BB‘),再把竹竿竖立在地面上, 测得竹竿的影长(B‘C‘)为1.8米,求路灯离地面的高度.5.如图,小华在晚上由路灯A走向路灯B,当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部,当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部,已知小华的身高是1.60m,两个路灯的高度都是9.6m,设AP =x(m)。 (1)求两路灯之间的距离; (2)当小华走到路灯B时,他在路灯下的影子是多少? 6. △ABC是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?解:设正方形PQMN是符合要求的△ABC的高AD与PN相交于点E。设正方形PQMN的边长为 x 毫米。
因为PN∥BC,所以△APN∽ △ABC
所以1. 在实际生活中, 我们面对不易直接测量的物体的高度,长度时, 可以把它们转化为数学问题,建立相似三角形模型,再利用相似三角形的性质来达到求解的目的。
2. 我们应该掌握并应用一些简单的相似三角形模型。                  小小方法多总结利用三角形相似可以解决一些不能直接测量的物体的长度的问题