《一次方程(组)及其应用》教学设计
一、教学目标
1.了解等式、方程、一元一次方程和二元一次方程(组)的概念,掌握等式的基本性质.
2.掌握一元一次方程和二元一次方程组的解法.
3.注重对方程思想、转化思想以及分析问题和解决问题能力的训练.
教学重点:方程(组)解的应用,
教学难点:转化、肖元思想、
二、考点梳理及练习
考点一 等式及方程的有关概念
1.等式及其性质
(1)用等号“=”来表示相等关系的式子,叫做等式.
(2)等式的性质:等式两边加(或减)同一个数或同一个整式,所得结果仍是等式;等式两边乘(或除以)同一个数(除数不能是0),所得结果仍是等式.
2.方程的有关概念
(1)含有未知数的等式叫做方程.
(2)方程的解:使方程左右两边的值相等的未知数的值叫做方程的解,一元方程的解,也叫它的根.
(3)解方程:求方程解的过程叫做解方程.
例1、下列方程的变形的依据是什么?
考点二 一元一次方程
1.只含有一个未知数,并且未知数的次数都是1,系数不等于零的整式方程叫做一元一次方程,其一般形式为ax+b=0(a≠0),其解为x=.
2.解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1.
例2、解方程
考点三 二元一次方程组的有关概念
1.二元一次方程
(1)概念:含有两个未知数,并且未知数的项的次数都是1,这样的方程叫做二元一次方程.
(2)一般形式:ax+by=c(a≠0,b≠0).
(3)使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
(4)解的特点:一般地,二元一次方程有无数个解.
2.二元一次方程组
(1)概念:具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.
(2)一般形式:(a1,a2,b1,b2均不为零).
(3)二元一次方程组的解
一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
考点四 二元一次方程组的解法
解二元一次方程组的基本思想是消元,即化二元一次方程组为一元一次方程,主要方法有代入消元法和加减消元法.
1.用代入消元法解二元一次方程组的一般步骤为:(1)从方程组中选定一个系数比较简单的方程进行变形,用含有x(或y)的代数式表示出y(或x),即变成y=ax+b(或x=ay+b)的形式;(2)将y=ax+b(或x=ay+b)代入另一个方程,消去y(或x),得到关于x(或y)的一元一次方程;(3)解这个一元一次方程,求出x(或y)的值;(4)把x(或y)的值代入y=ax+b(或x=ay+b)中,求y(或x)的值.
2.用加减消元法解二元一次方程组的一般步骤为:(1)在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可以直接相减(或相加),消去一个未知数;(2)在二元一次方程组中,若不存在(1)中的情况,可选一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数;(3)解这个一元一次方程;(4)将求出的一元一次方程的解代入原方程组中系数比较简单的方程内,求出另一个未知数.
例3‘解方程组
考点五 方程(组)解的应用练习
1.已知x=2是关于x的方程x-2a=0的解,则a的值是( ).
A.4 B.2 C.1 D.
2.已知是方程2x-ay=3的一个解,那么a的值是( ).
A.1 B.3 C.-3 D.-1
3.若有方程组则x-y的值是( ).
A.2 B.-2 C.1 D.-1
4.请写出一个解为x=2的一元一次方程:__________.
5.已知是二元一次方程组的解,则a-b的值为__________
6.已知是二元一次方程组的解,则2m-n的算术平方根为( ).
A.4 B.2 C. D.±2
作业:错误习题整理