北师大版八年级数学下册 5.1 认识分式 教案

文档属性

名称 北师大版八年级数学下册 5.1 认识分式 教案
格式 doc
文件大小 117.0KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2022-03-15 14:36:48

图片预览

文档简介

认识分式
【教学目标】
一、知识与技能
1.分式的基本性质。
2.利用分式的基本性质对分式进行“等值”变形。
3.了解分式约分的步骤和依据,掌握分式约分的方法。
4.使学生了解最简分式的意义,能将分式化为最简分式。
二、过程与方法
1.能类比分数的基本性质,推测出分式的基本性质。
2.情感态度与价值观
3.通过类比分数的基本性质及分数的约分,推测出分式的基本性质和约分,在学生已有数学经验的基础上,提高学生学数学的乐趣。
4.行为与创新
5.培养学生加强事物之间的联系,提高数学运算能力。
【教学重难点】
1.分式的基本性质。
2.利用分式的基本性质约分。
3.将一个分式化简为最简分式。
4.分子、分母是多项式的约分。
【教学准备】
教师:课件
学生:练习本
【教学过程】
一、复习分数的基本性质,推想分式的基本性质。
[师]我们来看如何做不同分母的分数的加法:+ 。
[生]+=+=+=。
[师]这里将异分母化为同分母,==,
==。这是根据什么呢?
[生]根据分数的基本性质:分数的分子与分母都乘以(或除以)同一个不等于零的数,分数的值不变。
[师]很好!分式是一般化了的分数,我们是否可以推想分式也有分数的这一类似的性质呢?
二、新课讲解
1.分式的基本性质
出示投影片
(1)=的依据是什么?
(2)你认为分式与相等吗?与呢?与同伴交流。
[生](1)将的分子、分母同时除以它们的最大公约数3得到。即==。
依据是分数的基本性质:分数的分子与分母同乘以(或除以)同一个不等于零的数,分数的值不变。
(2)分式与相等,在分式中,a≠0,所以==;
分式与也是相等的。在分式中,n≠0,所以==。
[师]由此,你能推想出分式的基本性质吗?
[生]分式是一般化了的分数,类比分数的基本性质,我们可推想出分式的基本性质:
分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变。
[师]在运用此性质时,应特别注意什么?
[生]应特别强调分式的分子、分母都乘以(或除以)同一个不为零的整式中的“都”“同一个”“不为零”。
[师]我们利用分数的基本性质可对一个分数进行等值变形。同样我们利用分式的基本性质也可以对分式进行等值变形。
下面我们就来看一个例题
[例2]下列等式的右边是怎样从左边得到的?
(1)=(y≠0);(2)=。
[生]在(1)中,因为y≠0,利用分式的基本性质,在的分子、分母中同乘以y,即可得到右边,即==;
[师]很好!在(1)中,题目告诉你y≠0,因此我们可用分式的基本性质直接求得。
可(2)中右边又是如何从左边得到的呢?
[生]在(2)中,可以分子、分母同除以x得到,即 ==。
[生]“x”如果等于“0”,就不行。
在中,x不会为“0”,如果是“0”,中分母就为“0”,分式将无意义,所以(2)中虽然没有直接告诉我们x≠0,但要由得到,必须有意义,即bx≠0由此可得b≠0且x≠0.
[师]这位同学分析得很精辟!
2.分式的约分。
[师]利用分数的基本性质可以对分数进行化简。利用分式的基本性质也可以对分式化简。
我们不妨先来回忆如何对分数化简。
[生]化简一个分数,首先找到分子、分母的最大公约数,然后利用分数的基本性质就可将分数化简。例如,3和12的最大公约数是3,所以==。
[师]我们不妨仿照分数的化简,来推想对分式化简。
[例3]化简下列各式:
(1);(2)。
[师]在分数化简中,我们约去了分子、分母的公约数,那么在分式化简中,我们应如何办?
[生]约去分子、分母中的公因式。例如(1)中a2bc可分解为ac·(ab)。分母中也含有因式ab,因此利用分式的基本性质:
===ac.
[师]我们可以注意到(1)中的分式,分子、分母都是单项式,把公有的因式分离出来,然后利用分式的基本性质,把公因式约去即可。这样的公因式如何分离出来呢?同学们可小组讨论。
[生]如果分子、分母是单项式,公因式应取系数的最大公约数,相同的字母取它们中最低次幂。
[师]回答得很好。可(2)中的分式,分子、分母都是多项式,又如何化简?
[生]通过对分子、分母因式分解,找到它们的公因式。
[师]这个主意很好。现在同学们自己动手把第(2)题试着完成一下。
[生]解:(2)==。
[生]老师,我明白了,遇到分子、分母是多项式的分式,应先将它们分解因式,然后约去公有的因式。
[师]在例3中,=ac,即分子、分母同时约去了整式ab; =,即分子、分母同时约去了整式x-1.把一个分式的分子和分母的公因式约去,这种变形我们称为分式的约分。
下面我们亲自动手,再来化简几个分式。
做一做
化简下列分式:
(1);(2)。
[生]解:(1)==;
(2)=。
[师]在刚才化简第(1)题中的分式时,一位同学这样做的
议一议
在化简时,小颖是这样做的:=
你对上述做法有何看法?与同伴交流。
[生]我认为小颖的做法中,中还有公因式5x,没有化简完,也就是说没有化成最简结果。
[师]很好!如果化简成,说明化简的结果中已没有公因式,这种分式称为最简分式。因此,我们通常使结果成为最简分式或者整式。
三、巩固、提高
1.填空:
(1)=;
(2)
2.化简下列分式:
(1);
(2)。
解:1.(1)因为=
=
所以括号里应填2x2+2xy;
(2)因为==。
所以括号里应填y-2.
2.(1)==;
(2)==。
四、课时小结
[师]通过今天的学习,同学们有何收获?(鼓励学生积极回答)
[生]数学知识之间是有内在联系的。利用分数的基本性质就可推想出分式的基本性质。
[生]分式的约分和化简可联系分数的约分和化简。
[生]化简分式时,结果一定要求最简。
……
【作业布置】
1.下列约分正确的是( )
A. B.
C. D.
2.下列变形不正确的是( )
A. B.(x≠1)
C.= D.
3.等式成立的条件是( )
A.a≠0且b≠0 B.a≠1且b≠1
C.a≠-1且b≠-1 D.a、b 为任意数
4.如果把分式中的x和y都扩大10倍,那么分式的值( )
A.扩大10倍 B.缩小10倍
C.是原来的 D.不变
5.不改变分式的值,使的分子、分母中最高次项的系数都是正数,则此分式可化为( )
A. B.
C. D.
答案:1.D 2.C 3.C 4.D 5. D
PAGE
1 / 7