《小数的意义》教学实录
一、教学目标:
知识与能力:
了解小数的产生、理解和掌握小数的意义。
初步理解整数、小数、分数之间的联系,掌握相邻两个计数单位间的进率。
过程和方法:
了解数学知识的产生过程,感受生活中处处有数学并激发学生的学习兴趣,培养动手实践、合作探索的学习习惯。
重点和难点:
重点:在学生初步认识分数和小数的基础上,进一步理解小数的意义,并理解和掌握小数的计数单位及相邻两个单位间的进率。
难点:认识小数的计数单位,理解他们之间的进率。
教学准备:
课件、正方形涂色卡纸、米尺
四、教学过程:
沟通小数,整数的十进关系
1、数数,明确小数产生的必要性
师:你们会数数吧?(会)
师:既然大家都会数数,老师这里也带来了一些正方形,我们一起来数一数。(课件出示11个正方形)数出来的请举手!
生:11个
师:同意吗?(同意)
师:哇,都厉害,水平确实比一年级高了许多,这个11是怎么数出来的?(一个一个数)这个“11”中左边的1表示什么?(板书11,指问十位上的1)
生:表示一个十
师:也就是表示有10张纸,我们说10个一就可以用10来表示,那10个10呢? 生:100
师:还可以往前写吗?(可以)还是可以继续写的。右边这个1表示?
生:表示1个一
2、理解小数和整数的十进关系
师:在这里也就是1个。聪明的孩子往下看,涂色的部分又可以用什么数字来表达呢?(出示课件)说对的有礼物,礼物就是这个正方形(出示礼物图片)
生1:三分之二
师:还有不同意见吗?
生2:0.7
师:还有没有不同意见?奇怪了,为什么你们刚才都是用分数或小数来表示呢?
生1:因为它不是整数生2:它已经不完整了生3:涂色部分已经不满1了
师:那这2个谁能得到礼物呢?怎么办?一人一半可以吗?数学是都是这样平均分的。你说明你的理由?
生:把正方形平均分成3份,其中的两份就是三分之二。
师:掌声送给他。那么0.7会不会得到礼物呢?你又是怎么数出来的?
生:把1平均分成10份,看是不是涂了7份
师:奇怪了,平均分成3份,是三分之二。0.7为什么是平均分成10份?
生1:因为1里面有10个0.1
师:谁听懂他的话了?
生2:他说1里面有10个0.1
师:也就是说10个0.1就是1 .以前学过10个1是10,他们都是满十进一。
二、明确小数和分数的关系
1、一位小数与十分之几的关系
师:这个办法可以吗?把这个正方形平均分成10份,红色部分有7份就是0.7
(小结:)我们可以得知十分之几的数就是一位小数。掌声有请0.7上来领奖。他拿走了,你们还想不想要。有,接下来这个正方形,涂色部分是4份,说对的就是你的?
生:十分之四/0.4
师:同意吗? 生:同意
师:掌声请他上来领奖,你也拿走了,你要不要和大家共享一下。掌声。你怎么不鼓掌?
生:他这个有点不对劲
师:(课件显示)他们有人说不对,你能得到这个礼物吗?
生:不能。因为我们应该是平均分成10份
师:可我确实涂了4份啊?
生:如果是五份的话,就是五分之四,而不是0.4
师:那应该是0.几?
生:0.8
师:讲道理?
生:如果是1就应该平均分成10份,而你只分了5份,涂了4份,就应该再乘以2,等于0.8
2、两位小数的产生和意义
师:还要继续猜吗?要什么提示?
生:平均分成几份,涂了几份
师:接下来这个正方形我确定是平均分成了10份,不过,涂色的部分比8多
生1:0.9 生2:1
师:谁明白他说1是什么意思?
生:1就是10个0.1,这张纸涂满了
师:谁说的对呢?见证奇迹的时刻到了(课件显示)
生:啊!怎么是这样
师:聪明的孩子想一想,还能用小数表示吗?把答案写在纸上
生:0.88/0.89
师:到底是0.88,还是0.89呢?怎么办?
生:可以把0.1再平均分成10份
师:(板书:再平均分成10份)我们一起来见证奇迹,大家一起大声喊123
师:谁对了?
生:0.88,因为它是将涂色的最后一条再平均分成了10份,涂了8份就是0.88
师:这1小块是。。。?
生:0.01
师:那也就是说把整个正方形平均分成了几份?
生:100份
师:你们怎么知道是100份?
生:因为10乘10等于100
师:谁听懂了他这句话?
生:他说的是10个10
生:因为他先把一个正方形平均分成了10份,然后再把每一小份都平均分成10份,10个10份就是100份
师:涂色的占多少份?
生:88份
师:所以这个数是?
生:0.88
师:很好,继续,看谁能数得出来(课件显示增加0.01)现在呢?
生:0.89
师:继续(课件又增加0.01)请把它写出来
师:这下有意思了,这位同学一会儿写0.9,一会儿写0.90,很犹豫,大家觉得呢? 生:都对
师:说道理,为什么?
生:因为0.9是把这个正方形平均分成了10份,涂色部分是9份。而0.90是把这个正方形平均分成了100份,其中涂色部分有90个。
师:掌声送给这位同学!
师:为什么有的时候是一位小数,有的时候是两位小数呢?什么原因?
师:是吗?那也就是说小数是与谁有关系? 生:
师:准确的说应该是和平均分成了几份有关。
3、认识三位小数
师:我们对1的认识也越来越深刻了。除了分成10份,是十分之几,分成100份, 是百分之几。你们还有什么想法吗?你们还想分成? 生:1000份
师:假如我们就把他分成1000份,1000份的一份是什么意思?
生:一千分之一
师:一千分之一写成小数就是0.001。(板书)谁还没有发言过?你来说一个三位小数。(指名没发言过的同学说)
生1:千分之一百(一千份里的一百份) 生2:千分之八(一千份里的八份) 生3:1.008(这里还有一个1呢)
师:还可以写好多好多吧。在这个正方形中能表示出0.536吗?同桌一起商量。
生:把这个正方形平均分1000份,涂536份。
师:可以吧?我觉得这样太麻烦了,还有不一样的方法吗?
生:可以先把一个正方形平均分成10份,涂5份,再把第6份平均分成10份。。。
师:等会儿,你说平均分成10份,涂5份是什么意思?
生:这就表示0.5。然后再把第6份平均分成10份,涂其中的3份,再把第4小格平均分成10份
师:为什么要再平均分成10份呢?
生:涂其中的6份就是0.006了
师:太棒了!老师这里也有一个三位小数0.999,同学们仔细观察,这三个老9,它们穿的外衣一样吗?表达的意思一样吗?
生:不一样
师:第一个9表示?(9个0.1)第二个9呢?(9个0.01)最后一个9?(9个0.001)有一天,小1就跟他们对话了:“你别总看不起我,我往这一站,你们三个大老9能赶上我一个小1吗?我是一个完整的1,你却是在1里面平均分成了1000份,你只是里面的999份,你还跟我差了0.001.。”谁大啊?
生:小1大
师:小1说:“我萝卜小,可却长在辈上。”孩子们,因为它站的位置是几?
生:1或整数
三、小结拓展
师:同学们,我们回头看:一位小数表示的是什么样的数? 生:十分之几
师:接下来呢?两位小数呢 生:百分之几
师:三位小数就是? 生:千分之几
师:四位小数呢? 生:万分之一
师:真好,同学们,刚刚通过分的过程,我们认识了这么多的小数,找对数的感觉。那么小数是怎么得来的?
生:分出来的
师:也就是说不断的分啊分,就产生了更多更多的小数。真好。这个“1”就是1,它还是什么?
生:计数单位
师:10也是计数单位,那么0.1呢?0.01.。。。。。
生:也都是计数单位
师:10个0.001就是0.01,10个0.01就是0.1,10个0.1就是1.想说什么?同学之间相互议论,你发现了什么?
生:小数之间的进率是10
师:那1和0.001之间也是10吗?
生:相邻的两个计数单位之间的进率是10
师:你真像数学人,数学人是严谨的。实际上我们今天一直在跟哪个数干?
生:1
师:过去我们学过1可以不断扩大,10,100,1000.。。。这个1可以不断地长,所以在三字经里面有:“一而十,十而百,百而千,千而万,万而。。。。。”(学生接着说)
师:有头吗?(没)你能再接着长。刚才你们续写了三字经,现在我们回头看,小1啊,你既能长,也能?(缩)
生:缩。0.1,0.01,0.001.。。。。
师:还能缩吗?同学们,长啊长,无穷(无尽)。缩啊缩,(无穷无尽)。这是一个怎样的数啊?(神奇的数)这是怎样来的啊?
生:分来的
师:不断地进行分分分分分。这节课,我们折腾了一节课,就是在不断地进行“细化单位”。有问题吗?就没有人问我你为什么要分啊?分了半天,到底是为什么啊?
生:分到底是为了什么?
师:你的问题真好。细化单位后,你到底要干什么?
生:让分的数更准确
生:明白了小数的意义
师:还有吗 一定还有同学要说,不急,我等下一定会让你说。最后,老师还有跟你们举个例子:那一次的世界田径赛中,刘翔和老对手约翰逊都跑了13秒多点儿,1秒就“嗒”,13秒31是什么意思?(把那1秒又分了,分成了100份,刘翔跑了其中的31份)约翰逊跑了13秒41,刘翔就以1秒里的百分之十的时间取胜了,如果我们不细分,都是13秒,他们就平局了,那么世界冠军花落谁家,我们不得而知。可是小数来了,你们都是13秒,你们猜小数说了什么?
生:我再给你们细化细化
师:小数就是这么说的,我再给你们细化细化,看看你们谁再厉害那么一点点。于是就开始分分,分了以后就花落到了刘翔家。同学们想想:如果没有小数的话?
生:这场比赛就不知道花落谁家了。
师:所以小数是为了? 生:更加准确
师:你们的感觉真好,最终是为了更加准确地来进行表达,所以小数就这样起到了精准表达的作用。
师:同学们,你们知道吗?小数是我国最早提出和使用的,早在一千七百多年前,我国古代数学家刘微注《九章算术》的时候,已提出十进小数。祖冲之在刘徽开创的探索圆周率的精确方法的基础上,首次将"圆周率"精算到小数第七位,即在3.1415926和3.1415927之间,他提出的"祖率"对数学的研究有重大贡献。
师:一千多年前我国在数学方面是领先水平。那如今又如何呢?我们先来观看一段小视频。(播放视频)同学们,现如今却我国和美国有了那么0.4米的差距。未来的中国还需要你们这一代数学人的努力。
同学们,一节课的时间很快就要过去了,从你们开始对小数的认识,到今天,你们有什么新的收获吗?
生123456:小数能精准表达生活
师:你怎么跟我们教研员似的,讲的真好,既有条理,又有思考。这节课就到这结束了。