(共24张PPT)
2022年春人教版数学
八年级下册数学精品课件
19.2.2 一次函数
第2课时 一次函数的图像与性质
第十九章 一次函数
情境引入
1.会画一次函数的图象,掌握一次函数的性质.(重点)
2.能灵活运用一次函数的图象与性质解答有关问题.(难点)
学习目标
(1)什么叫一次函数?从解析式上看,一次函数与正比 例函数有什么关系?
(2)正比例函数的图象是什么?是怎样得到的?
(3)正比例函数有哪些性质?是怎样得到这些性质的?
导入新课
复习引入
正比例函数
解析式 y =kx(k≠0)
性质:k>0,y 随x 的增大而增大;k<0,y 随 x 的增大而减小.
一次函数
解析式 y =kx+b(k≠0)
针对函数 y =kx+b,大家想研究什么?应该怎样研究?
?
?
研究函数 y =kx+b(k≠0)的性质;
研究方法:
画图象→观察图象→变量(坐标)意义解释.
一次函数的图象
画出函数y1=-6x与y2=-6x+5的图象.
解:列表
… …
… …
… …
y1
y2
描点并连线:
12
6
0
-6
-12
17
11
5
-1
-7
x
-2
-1
0
1
2
例1
讲授新课
一次函数y=kx+b(k≠0)的图象也称作直线y=kx+b
比较上面两个函数的图象回答下列问题:
(2)函数y1=-6x的图象经过 ,函数y2=-6x+5的图像与y轴交于点( ),即它可以看作由直线y1=-6x向
平移 个单位长度而得到.
(1)这两个函数的图象形状都是 ,并且倾斜
程度 .
原点
0 ,5
上
5
一条直线
相同
观察与思考
一次函数y=kx+b(k≠0)的图象经过点(0,b),可以由正比例函数y=kx的图象平移 个单位长度得到(当b>0时,向 平移;当b<0时,向 平移).
下
上
怎样画一次函数的图象最简单?为什么?
由于两点确定一条直线,画一次函数图象时我们只需描点(0,b)和点 或 (1,k+b),连线即可.
两点
作图法
思考: 与x轴的交点坐标是什么?
总结归纳
O
用你认为最简单的方法画出下列函数的图象:
(1) y=-2x-1;(2) y=0.5x+1
x 0 1
y=-2x-1
y=0.5x+1
-1
-3
1
y=-2x-1
1.5
y=0.5x+1
也可以先画直线 y=-2x与 y=0.5x,再分别平移它们,也能得到直线y=-2x-1与 y=0.5x+1
做一做
一次函数的性质
画出下列一次函数的图象:
(1)y =x+1; (2)y =3x+1;
(3)y =-x+1; (4)y =-3x+1.
仿照正比例函数的做法,你能看出当 k 的符号变化时,函数的增减性怎样变化吗?
合作探究
思考
6
-2
-5
5
x
y
O
2
4
A
B
C
D
E
y =x+1
y =3x+1
y =-x+1
y =-3x+1
k>0时,直线左低右高,y 随x 的增大而增大;
k<0时,直线左高右低,y 随x 的增大而减小.
在一次函数y=kx+b中,
当k>0时,y的值随着x值的增大而增大;
当k<0时,y的值随着x值的增大而减小.
由此得到一次函数性质:
P1(x1,y1),P2(x2,y2)是一次函数y=-0.5x+3图象
上的两点,下列判断中,正确的是( )
A.y1>y2 C.当x1<x2时,y1<y2
B. y1<y2 D.当x1<x2时,y1>y2
D
解析:根据一次函数的性质: 当k<0时,y随x的增大而减小,所以D为正确答案.
提示:反过来也成立:y越大,x也越大.
例2
k 0,b 0
>
>
k 0,b 0
k 0,b 0
k 0,b 0
k 0,b 0
k 0,b 0
>
>
>
<
<
<
<
<
=
=
根据一次函数的图象判断k,b的正负,并说出直线经过的象限:
思考
一次函数y=kx+b中,k,b的正负对函数图象及性质有什么影响?
当k>0时,直线y=kx+b由左到右逐渐上升,y随x的增大而增大.
当k<0时,直线y=kx+b由左到右逐渐下降,y随x的增大而减小.
① b>0时,直线经过 一、二、四象限;
② b<0时,直线经过二、三、四象限.
① b>0时,直线经过一、二、三象限;
② b<0时,直线经过一、三、四象限.
总结归纳
已知一次函数 y=(1-2m)x+m-1 , 求满足下列条件的m的值:
(1)函数值y 随x的增大而增大;
(2)函数图象与y 轴的负半轴相交;
(3)函数的图象过第二、三、四象限;
解:(1)由题意得1-2m>0,解得
(2)由题意得1-2m≠0且m-1<0,即
(3)由题意得1-2m<0且m-1<0,解得
例3
当堂练习
1. 一次函数y=x-2的大致图象为( )
C
A B C D
4.直线y =2x-3 与x 轴交点的坐标为________;与y 轴交点的坐标为________;图象经过____________象限, y 随x 的增大而________.
2.下列函数中,y的值随x值的增大而增大的函数是( ). A.y=-2x B.y=-2x+1 C.y=x-2 D.y=-x-2
C
3.直线y=3x-2可由直线y=3x向 平移 单位得到.
下
2
5.点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,则y1-y2 0(填“>”或“<”).
>
(0,-3)
一、三、四
增大
(1.5,0)
6.已知一次函数y=(3m-8)x+1-m图象与 y轴交点在x轴下方,且y随x的增大而减小,其中m为整数,求m的值 .
解: 由题意得 ,解得
又∵m为整数,
∴m=2
课堂小结
一次函数函数的图象和性质
当k>0时,y的值随x值的增大而增大;
当k<0时,y的值随x值的增大而减小.
与y轴的交点是(0,b),
与x轴的交点是( ,0),
当k>0, b>0时,经过一、二、三象限;
当k>0 ,b<0时,经过一、三、四象限;
当k<0 ,b>0时,经过 一、二、四象限;
当k<0 ,b<0时,经过二、三、四象限.
图象
性质
课后作业
1、完成课本练习题。
2、完成练习册本课习题。
https://www.21cnjy.com/help/help_extract.php