2.2法拉第电磁感应定律 课后练习(Word版含答案)

文档属性

名称 2.2法拉第电磁感应定律 课后练习(Word版含答案)
格式 doc
文件大小 881.2KB
资源类型 教案
版本资源 人教版(2019)
科目 物理
更新时间 2022-03-18 11:53:44

图片预览

文档简介

2.2、法拉第电磁感应定律
一、选择题(共16题)
1.两块水平放置的金属板,板间距离为d,用导线将两块金属板与一线圈连接,线圈中存在方向竖直向上、大小变化的磁场,如图所示.两板间有一个带正电的油滴恰好静止,则线圈中磁场的磁感应强度B随时间变化的图象为( )
B.
C. D.
2.闭合的金属环处于随时间均匀变化的匀强磁场中,磁场方向垂直于圆环平面,则(   )
A.环中产生的感应电动势均匀变化
B.环中产生的感应电流均匀变化
C.环中产生的感应电动势保持不变
D.环上某一小段导体所受的安培力保持不变
3.如图甲所示,一个圆形线圈放于一个随时间变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面),以垂直纸面向里为正方向。磁感应强度B随时间t的变化规律如图乙所示。取图示线圈中电流方向为正方向,用i表示线圈中的感应电流,则下列表示电流随时间变化的4幅i-t图像正确的是(  )
B.
C.D.
4.如图所示,边长为L的正方形导线框质量为m,由距磁场高处自由下落,其下边ab进入匀强磁场后,线圈开始做减速运动,直到其上边cd刚刚穿出磁场时,速度减为ab边进入磁场时的一半,磁场的宽度也为L,则线框穿越匀强磁场过程中产生的焦耳热为()
A.3mgL B. C.2mgL D.
5.矩形导线框固定在匀强磁场中,如图15甲所示.磁感线的方向与导线框所在平面垂直,规定磁场的正方向为垂直纸面向里,磁感应强度B随时间t变化的规律如图乙所示,则(  )
A.从0~t1时间内,导线框中电流的方向为a→b→c→d→a
B.从0~t1时间内,导线框中电流越来越小
C.从0~t2时间内,导线框中电流的方向始终为a→d→c→b→a
D.从0~t2时间内,导线框bc边受到的安培力越来越大
6.如图所示,光滑固定平行金属导轨、所在平面与水平面成角,两端点M、P间接有阻值为R的定值电阻。阻值为r的金属棒垂直导轨放置,其他部分电阻不计,整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向上。从时刻开始,棒受到一个平行于导轨向上的外力F作用,由静止开始沿导轨向上运动,运动中棒始终与导轨垂直,且接触良好,通过R的感应电流I随时间t变化的图像如图乙所示,选项图中给出了外力F大小随时间t变化的图像,其中正确的是(  )
A. B.
C. D.
7.一线圈匝数为n=10匝,线圈电阻r=2.0Ω,在线圈外接一个阻值R=3.0Ω的电阻,如图甲所示。线圈内有垂直纸面向里的磁场,线圈内磁通量Φ随时间t变化的规律如图乙所示。下列说法正确的是(  )
A.线圈中产生的感应电动势为10V
B.R两端电压为5V
C.电路中消耗的总功率为5W
D.通过R的电流大小为2.5A
8.如图所示,在匀强磁场中固定放置一根串接一电阻R的直角形金属导轨aOb(在纸面内),磁场方向垂直于纸面朝里,另有两根金属导轨c、d分别平行于Oa、Ob放置.
保持导轨之间接触良好,金属导轨的电阻不计.现经历以下四个过程:①以速率v移动d,使它与Ob的距离增大一倍;②再以速率v移动c,使它与Oa的距离减小一半;③然后,再以速率2v移动c,使它回到原处;④最后以速率2v移动d,使它也回到原处.设上述四个过程中通过电阻R的电量大小依次为Q1、Q2、Q3和Q4,则( )
A.Q1=Q2=Q3=Q4
C、Q1=Q2=2Q3=2Q4
B.2Q1=2Q2=Q3=Q4
C.Q1≠Q2=Q3≠Q4
9.半径为r的圆环电阻为R,ab为圆环的一条直径.如图所示,在ab的一侧存在一个均匀变化的匀强磁场,磁场垂直圆环所在平面,方向如图,磁感应强度大小随时间的变化关系为B=B0+kt(k>0),则(   )
A.圆环中产生顺时针方向的感应电流
B.圆环具有扩张的趋势
C.圆环中感应电流的大小为
D.图中a、b两点间的电势差
10.如图a所示,固定在水平面内的光滑金属框架处于方向竖直向下的匀强磁场中,金属杆与金属框架接触良好,在两根导轨的端点d、e之间连接一电阻,其他部分电阻忽略不计。现用一水平向右的外力F作用在金属杆上,使金属杆在框架上由静止开始向右滑动,运动中杆始终垂直于框架。图b为一段时间内金属杆中的电流I随时间t的变化关系,则选项图中可以表示此段时间内外力F随时间t变化关系的图象是(  )
A. B.
C. D.
11.如图所示,两电阻不计的足够长光滑导轨倾斜放置,上端连接一电阻R,空间有一垂直导轨平面向上的匀强磁场B,一质量为m的导体棒与导轨接触良好,从某处自由释放,下列四幅图像分别表示导体棒运动过程中速度v与时间t关系、加速度a与时间t关系、机械能E与位移x关系、以及通过导体棒电量q与位移x关系,其中可能正确的是(  )
B.
C. D.
12.如图所示,边长为L的正方形导线框abcd处于磁感应强度为B0的匀强磁场中,bc边与磁场右边界重合.现发生以下两个过程:一是仅让线框以垂直于边界的速度ν匀速向右拉出磁场:二是仅使磁感应强度随时间均匀变化.若导线框在上述两个过程中产生的感应电流大小相等,则磁感应强度的变化率为
A. B. C. D.
13.如图所示,阻值为的金属棒从图示位置分别以、的速度沿光滑导轨(电阻不计)匀速滑到位置,若,则在这两次过程中(  )
A.回路电流 B.产生的热量
C.通过任一截面的电荷量 D.外力的功率
14.如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒、静止在导轨上。时,棒以初速度向右滑动,运动过程中,、始终与导轨垂直并接触良好,两者速度分别用、表示,棒所受的安培力用F表示。下列图像中可能正确的是(  )
A. B.
C. D.
15.如图甲所示,一对足够长的平行光滑轨道(电阻不计)固定在水平面上,两轨道相距L=1m,左端用R=1.5Ω的电阻连接。一质量m=1kg、电阻r=0.5Ω的导体杆垂直并静置于两轨道上。整个装置处于磁感应强度B=2T的匀强磁场中,磁场方向垂直轨道平面向上。现用水平拉力F沿轨道方向作用在导体杆上,导体杆的速度随时间变化的关系如图乙所示。某时刻撤去拉力F,导体杆又滑行了一段距离后停下。则以下说法正确的是(  )
A.前2s内,通过电阻R的电荷量为4C
B.导体杆运动过程中所受拉力恒为8N
C.导体杆在前2s内产生的电动势与时间的数值关系为E=4t
D.从撤去拉力F到导体杆停止运动的过程中,电阻R上产生的热量为6J
16.Π型光滑金属导轨对水平地面倾斜固定,空间有垂直于导轨平面的磁场,将一根质量为m的金属杆ab垂直于导轨放置,如图9,金属杆ab从高度h1处释放后,到达高度为h2的位置(如图中虚线所示),其速度为v,在此过程中,设重力G和磁场力F对杆ab做的功分别为WG和WF,回路中产生的焦耳热为Q,那么以下关系式中正确的是
A.mv2 > mgh1一mgh2+WF B.mv2=WG+WF
C.mv2 + Q = WG+WF D.mv2+Q = WG
二、填空题
17.如图所示,MN为金属杆,在竖直平面内贴着光滑金属导轨下滑,导轨的间距l=10cm,导轨上端接有电阻R=0.5Ω,导轨与金属杆电阻不计,整个装置处于B=0.5T的水平匀强磁场中,若杆稳定下落时,每秒钟有0.02J的重力势能转化为电能,则MN杆的下落速度v=_____m/s。
18.如图所示,金属环半径为a,总电阻为2R,匀强磁场磁感应强度为B,垂直穿过环所在平面。电阻为的导体杆AB沿环表面以速度v向右滑至环中央时,杆的端电压为______
19.如图所示,线圈L与电流表串联,线圈为100匝,在0.4 s内把磁铁插入线圈,这段时间里穿过线圈的磁通量由0.01 Wb增至到0.09Wb .这个过程中,线圈中的感应电动势为______ V.如果该线圈形成的闭合回路的总电阻为10Ω,则感应电流是_______________A.
20.如图所示,磁场的方向垂直于xy平面向里,磁感强度B沿y方向没有变化,沿x方向均匀增加,每经过1cm增加量为1.0×10-4T,有一个长L=20cm,宽h=10cm的不变形的矩形金属线圈,以v=20cm/s的速度沿x方向运动.则线圈中感应电动势E为_________V ,若线圈电阻R=0.02Ω,为保持线圈的匀速运动,需要外力大小为__________ N.
综合题
21.如图所示,竖直放置的“”形光滑导轨宽为L,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d,磁感应强度为B。质量为m的水平金属杆由距离磁场Ⅰ上表面h处静止释放,进入磁场Ⅱ时的速度是进入磁场Ⅰ时速度的2倍。金属杆在导轨间的电阻为R,与导轨接触良好,其余电阻不计,重力加速度为g。求
(1)将要进入磁场Ⅱ时的加速度大小和速度大小
(2)将要离开磁场Ⅰ时速度大小和加速度大小
(3)穿过磁场Ⅰ产生的热量
(4)穿过磁场Ⅰ产生的热量和穿过磁场Ⅱ产生的热量是否相等,简单说出理由

22.如图甲所示,一正方形线圈的匝数n=240匝,边长为a=0.5 m,线圈的总电阻R=2 Ω,线圈平面与匀强磁场垂直且固定,其中一半处在磁场中,磁场方向垂直纸面向里,磁感应强度大小B随时间t变化的关系如图乙所示,求:
(1)线圈中的感应电流的大小和方向;
(2)t=4 s时线圈受到的安培力的大小.
23.如图所示,倒“凸”字形硬质金属线框质量为m,总电阻为R,相邻各边相互垂直,且处于同一竖直平面内,ab、bc、cd、ef、fg、gh、ha边长均为l,ef边长3l,ab与ef平行.匀强磁场区域的上下边界均水平,磁场方向垂直纸面向内,磁场区域高度大于3l,磁感应强度大小为B.线框由静止开始从ab边距磁场上边界高度为处自由下落,当ghcd边进入磁场时,线框恰好做匀速运动,当ab边穿出磁场下边界时线框也做匀速运动,重力加速度为g,求:
(1)ghcd边刚刚进入磁场时的速度大小v;
(2)线框完全进入磁场过程中产生的热量Q;
(3)磁场区域高度H.
24.如图所示,竖直放置的平行导轨上搁置了一根与导轨接触良好的金属棒,当棒下落时,能垂直切割磁感线,试标出棒的感应电流方向和所受磁场力的方向.
( )
试卷第1页,共3页
参考答案:
1.C
【详解】
由题意可知,小球带正电,且处于平衡状态,即感应电动势恒定,同时可知上极板带负电,下极板带正电,故感应电流是俯视顺时针,故感应电流的磁场方向与原磁场方向相反,根据楞次定律得知,结合图示可知,根据法拉第电磁感应定律,则磁场正在均匀增加,故C正确,ABD错误;故选C.
2.C
【详解】
因为磁场是均匀变化的,穿过闭合金属环的磁通量是均匀变化的,根据得产生的感应电动势是恒定不变的,产生的感应电流是恒定不变的,但由于磁场在变化,所以安培力是变化的。
故选C。
3.B
【详解】
AB.由楞次定律判定感应电流方向。0~1s、4~5s两时间段内电流方向与题意正方向相反,1~2s、2~3s两时间段内电流方向与题意正方向相同。所以B正确,A错误;
CD.由电磁感应定律和欧姆定律得感应电流
则i的大小与的大小成正比。结合题图乙知,3~4s时间内
无感应电流。其他时间段内的大小相等,则感应电流大小恒定,即各段电流大小相等。所以CD错误。
故选B。
4.A
【详解】
设线框ab边刚进入磁场时速度大小为v.对于线框自由下落过程,根据机械能守恒定律得:mgH=mv2,得:v= ;从线框开始下落到cd刚穿出匀强磁场的过程,根据能量守恒定律得焦耳热为:Q=mg(2L+H)-m(v)2=3mgL,故选A.
5.C
【详解】
AC.由图可知,内,线圈中磁通量的变化率相同,故0到时间内电流的方向相同,由楞次定律可知,电路中电流方向为顺时针,即电流为adcba方向,故A错误C正确;
B.从0到时间内,线圈中磁通量的变化率相同,感应电动势恒定不变,电路中电流大小时恒定不变;导线电流大小恒定,故B错误;
D.从到时间内,电路中电流大小时恒定不变,故由可知,F与B成正比,即受到的安培力先减小后增大,故D错误.
6.B
【详解】
设金属棒ab的速度大小为v,由题图乙并根据闭合电路欧姆定律可得
解得
所以v随时间t均匀增大,即金属棒ab做匀加速运动,设加速度大小为a,根据牛顿第二定律有
解得
由上式可知F-t图像为斜率为正且与y轴正半轴相交的直线。
故选B。
7.C
【详解】
A.根据法拉第电磁感应定律可知线圈中的感应电动势
A错误;
B.根据串联电路的分压规律可知的分压
B错误;
C.电路中消耗的总功率
C正确;
D.通过电阻的电流为
D错误。
故选C。
8.A
【详解】
设d与ob之间距离为L1,c与oa之间距离为L2.

,则Q1=Q2=Q3=Q4,故选A.
9.C
【详解】
由于磁场均匀增大,线圈中的磁通量变大,根据楞次定律可知线圈中电流为逆时针,同时为了阻碍磁通量的变化,线圈将有收缩的趋势,故AB错误;根据法拉第电磁感应定律得电动势为: ,回路中的电阻为R,所以电流大小为,故选项C正确;ab两端电压为:,故D错误.
10.B
【详解】
由电磁感应定律,可得金属杆上的感应电动势为
E=BLv
电路中的感应电流
金属杆上的安培力大小为
由题图b可知,电流I与时间t成正比,则有速度v与时间t成正比,说明金属杆ab做匀加速运动,则有
v=at
由牛顿第二定律可得
F-F安=ma
解得
由上式可知B、L、R、a均不变,外力F与t是线性关系,t=0时,F轴的截距是ma,因此ACD错误,B正确。
故选B。
11.C
【详解】
A.根据右手定则和左手定则,导体棒在斜面方向受力有
可得
可知,速度逐渐增加,其他物理量不变,加速度逐渐减小,而速度时间图像中斜率表示加速度,由图可知加速度逐渐增加,与分析不符合,A错误;
B.由加速度时间图像可知,加速度逐渐减小,且加速度的变化率逐渐增大,由分析可得,加速度为
图像与分析变化率减小不符合,B错误;
C.开始时,合力方向沿斜面向下,位移沿斜面向下,合力做正功,动能增加,由动能定理有

联立可得
因此,机械能减小,当加速度为零时,导体棒会继续匀速下滑,此后动能不变,重力势能减小,机械能减小,C正确;
D.由电荷量的公式可得
在电磁感应中,电流与磁通量的关系为
联立可得
可知,电荷量与位移成正比,D错误。
故选C。
12.A
【详解】
仅让线框以垂直于边界的速度v匀速向右运动时产生的感应电动势为 E1=B0Lv;仅使磁感应强度随时间均匀变化产生的感应电动势为 ;据题线框中感应电流大小相等,则感应电动势大小相等,即E1=E2.解得,故选A.
13.A
【详解】
A.感应电动势为
电流为
所以回路电流。A正确;
B.产生的热量为
所以产生的热量,B错误;
C.通过任一截面的电荷量为
所以通过任一截面的电荷量。C错误;
D.导体棒做匀速运动,所以外力与安培力平衡,则外力的功率为
故外力的功率,D错误。
故选A。
14.AC
【详解】
AB.两导体棒中电流大小相等,方向相反,所以安培力也是等大反向,可以等效成相互作用力,根据动量守恒定律
解得,两导体棒最终的共同速度为
两导体棒中电流
由于ab棒加速,cd棒减速,速度差越来越小,所以回路电流越来越小,安培力越来越小,加速度应该是越来越小,变速阶段速度图像应该为曲线。故A正确,B错误。
CD.两导体棒中电流
由于ab棒加速,cd棒减速,速度差越来越小,所以回路电流越来越小,安培力
故安培力越来越小,最终两导体棒共速时,安培力变为零;故C正确,D错误。
故选AC。
15.ACD
【详解】
A.前2s内导体杆运动的位移为
通过电阻R的电荷量为
故A正确;
B.前2s内导体杆做匀加速运动,由牛顿第二定律有

则前2s内导体杆受到的拉力增大,故B错误;
C.导体杆在前2s内产生的电动势
故C正确;
D.由图乙可知,撤去拉力时导体杆的速度为4m/s,由动能定理得
则整个回路中产生的热量为8J,电阻R上产生的热量为
故D正确。
故选ACD。
16.BD
【详解】
金属杆ab从高度h1处释放后,到达高度为h2的位置,在此过程中根据能量守恒定律可知:重力势能的减少等于动能的增加和克服磁场力做的功,即mv2=WG+WF =mgh1-mgh2+WF,故A错误,B正确;根据功能关系Q=-WF ,变形为mv2+Q = WG,故C错误,D正确.故选BD.
17.2
【详解】
杆稳定下落时做匀速运动,重力的功率等于电路的电功率,设重力的功率为P,由题意有P=0.02W,根据功能关系有
由法拉第电磁感应定律得
联立得
代入数据得
18.Bav
【详解】
杆切割产生的感应电动势
E=B 2av=2Bav
两个电阻为R的半金属圆环并联,并联电阻
R并=
电路电流(总电流)
杆两端的电压
U=IR并=Bav
19. 20 2
【详解】
根据法拉第电磁感应定律得: ;
根据欧姆定律:
20.
【详解】
根据公式可得产生的电动势等于线圈在单位时间内磁通量的变化量,所以
物体受到的安培力大小为
21.(1);;(2);;(3)(4)不相等
【详解】
(1)金属杆将要进入磁场Ⅰ时速度为
则金属杆将要进入磁场Ⅱ时速度为
由牛顿第二定律可知
解得
(2)将要离开磁场Ⅰ时速度大小
由牛顿第二定律可知
加速度大小
(3)穿过磁场Ⅰ产生的热量
(4)金属棒穿过两磁场时,重力势能减小量相等,但是动能增量不等,则产生的热量不相等。
22.(1)1.5A,方向为逆时针方向(2)
【详解】
(1)根据法拉第电磁感应定律:
线圈中的感应电流的大小
电流方向为逆时针方向。
(2)由图可知t=4 s时B=0.6T
线圈受到的安培力的大小

23.(1)(2)(3)
【详解】
(1)ghcd边进入磁场后,切割磁感线的有效长度为3l,,,
解得
(2)ghcd边进入磁场后,线框一直做匀速运动,从开始下落到ef边进入磁场,由能量守恒定律,解得
(3)ab边穿出磁场下边界时线框也做匀速运动:,,
线框进入磁场后,穿过线圈磁通量不变,没有感应电流,只受到重力,加速度为g,
解得
24.
【详解】
已知磁场垂直直面向里、导体棒ab垂直磁场向下切割磁感线,则由右手定则可得感应电流方向由a指向b;导体棒ab通电后在磁场中所受安培力由左手定则可得竖直向上。如图所示:
答案第1页,共2页