课件37张PPT。24.1.4 圆周角------By Snake 复习旧知:请说说我们是如何给
圆心角下定义的,试回答?顶点在圆心的角叫圆心角。能仿照圆心角的定义,
给下图中象∠ACB 这样的角下个定义吗?顶点在圆上,并且两边都和圆相交的角叫做圆周角. 如下图,同学们能找到圆心角吗?它具有什么样的特征?(顶点在圆心,两边与圆相交的角叫做圆心角),今天我们要学习圆中的另一种特殊的角,它的名称叫做圆周角。问题探讨:判断下列图形中所画的∠P是否为圆周角?并说明理由。PPPP不是是不是不是顶点不在圆上。顶点在圆上,两边和圆相交。两边不和圆相交。有一边和圆不相交。有没有圆周角?有没有圆心角?它们有什么共同的特点?它们都对着同一条弧⌒⌒⌒当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC, ∠ADC,∠AEC.这三个角的大小有什么关系?.你能发现什么规律?实践活动 画一个圆,再任意画一个圆周角,看一下圆心在什么位置?圆心在一边上圆心在角内圆心在角外如图,观察圆周角∠ABC与圆心角∠AOC,它们的大小有什么关系?圆周角和圆心角的关系1.首先考虑第一种情况:
当圆心O在圆周角(∠ABC)的一边(BC)上时,圆周角∠ABC与圆心角∠AOC的大小关系.∵∠AOC是△ABO的外角,∴∠AOC=∠B+∠A.∵OA=OB,∴∠A=∠B.∴∠AOC=2∠B.即 ∠ABC = ∠AOC.你能写出这个命题吗?同弧所对的圆周角等于它所对的圆心角的一半.期望:你可要理解并掌握这个模型.第二种情况:如果圆心不在圆周角的一边上,结果会怎样?
2.当圆心O在圆周角(∠ABC)的内部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?提示:能否转化为1的情况?过点B作直径BD.由1可得: ∴ ∠ABC = ∠AOC.能写出这个命题吗?同弧所对的圆周角等于它所对的圆心角的一半.∠ABD = ∠AOD, ∠CBD = ∠COD,第三种情况:如果圆心不在圆周角的一边上,结果会怎样?
3.当圆心O在圆周角(∠ABC)的外部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?提示:能否也转化为1的情况?过点B作直径BD.由1可得:∴ ∠ABC = ∠AOC.你能写出这个命题吗?同弧所对的圆周角等于它所对的圆心角的一半.∠ABD = ∠AOD,∠CBD = ∠COD,巩固练习:如图,点A,B,C,D在同一个圆上,四
边形ABCD的对角线把4个内角分成
8个角,这些角中哪些是相等的角?圆心角的度数和它所对的弧的度数的关系 我们把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角。 在同圆或等圆中,圆心角的度数和它所对的弧的度数相等。 因为同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份。我们把每一份这样的弧叫做1°的弧。在同圆或等圆中,D·ABC1OC2C3归纳: 问题1:如图,AB是⊙O的直径,请问:
∠C1、∠C2、∠C3的度数是 。 推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 问题2: 若∠C1、∠C2、∠C3是直角,那么∠AOB是 。90°180°探究与思考:练习:2.如图,圆心角∠AOB=100°,则∠ACB=___。1.求圆中角X的度数 C C D B在同圆或等圆中,如果两个圆周角相等,它们所对弧一定相等吗?为什么?在同圆或等圆中,如果两个
圆周角相等,它们所对的弧
一定相等.当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC, ∠ADC,∠AEC.这三个角的大小有什么关系?.规律:都相等,都等于圆心角∠AOC的一半结论:同弧或等弧所对的圆周角相等。ABCD在同圆或等圆中相等的圆周角所对的弧相等.则 ∠ D=∠A∴AB∥CD练一练1、如图,在⊙O中,∠ABC=50°,
则∠AOC等于( )
A、50°; B、80°;
C、90°; D、100°D2、如图,△ABC是等边三角形,
动点P在圆周的劣弧AB上,且不
与A、B重合,则∠BPC等于( )
A、30°; B、60°;
C、90°; D、45°B练一练3、如图,∠A=50°, ∠ABC=60 °
BD是⊙O的直径,则∠AEB等于( )
A、70°; B、110°;
C、90°; D、120°B4、如图,△ABC的顶点A、B、C
都在⊙O上,∠C=30 °,AB=2,
则⊙O的半径是 。解:连接OA、OB∵∠C=30 ° ,∴∠AOB=60 °又∵OA=OB ,∴△AOB是等边三角形∴OA=OB=AB=2,即半径为2。23:已知⊙O中弦AB的等于半径,
求弦AB所对的圆心角和圆周角的度数。 圆心角为60度圆周角为 30 度或 150 度。 在⊙O中,∠CBD=30° ,∠BDC=20°,求∠A 2、如图,在⊙O中,AB为直径,CB = CF,
弦CG⊥AB,交AB于D,交BF于E
求证:BE=EC
⌒⌒例: 如图,AB是⊙O的直径AB=10cm,
弦AC=6cm,∠ACB的平分线交⊙O于点D . 求 BC, AD ,BD 的长.106练习:如图 AB是⊙O的直径, C ,D是圆上的两点,若∠ABD=40°,则∠BCD=_____.40°5.如图,你能设法确定一个圆形纸片的圆心吗?你有多少种方法?与同学交流一下.DOOO·方法一方法二方法三方法四AB练 习 如图所示,已知⊿ABC的三个顶点都在⊙O上,AD是⊿ABC的高,AE是⊙O的直径.
求证:∠BAE=∠CAD第二课时 应用回顾:圆周角定理及推论?
思考:判断正误:
1.同弧或等弧所对的圆周角相等( )
2.相等的圆周角所对的弧相等( )
3.90°角所对的弦是直径( )
4.直径所对的角等于90°( )
5.长等于半径的弦所对的圆周角等于30°( )例 如图,⊙O直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC、AD、BD的长.又在Rt△ABD中,AD2+BD2=AB2,解:∵AB是直径,∴ ∠ACB= ∠ADB=90°.在Rt△ABC中,∵CD平分∠ACB,∴AD=BD.例题3.求证:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(提示:作出以这条边为直径的圆.)·ABCO求证: △ABC 为直角三角形.证明:CO= AB,以AB为直径作⊙O,∵AO=BO, ∴AO=BO=CO.∴点C在⊙O上.又∵AB为直径,∴∠ACB= ×180°= 90°.∴ △ABC 为直角三角形.课本 练 习课堂练习1.如图,OA、OB、OC都是⊙O的半径,∠AOB=2∠BOC,∠ACB与∠BAC的大小有什么关系?为什么?2.如图,A、B、C、D是⊙O上的四个点,且
∠BCD=100°,求∠BOD( 所对的圆心角)
和∠BAD的大小。探究3、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F,点F不与点A重合。
(1)AB与AC的大小有什么关系?为什么?
(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由。∴△ABC是锐角三角形解:(1)AB=AC。证明:连接AD又∵DC=BD,∴AB=AC。(2)△ABC是锐角三角形。由(1)知,∠B=∠C<90 °连接BF,则∠AFB=90 °,∴∠A<90 °∵AB是直径,∴∠ADB=90°,1.AB、AC为⊙O的两条弦,延长CA到D,使 AD=AB,如果∠ADB=35° ,
求∠BOC的度数。∠BOC =140° ∠A=21° 4、在⊙O中,一条弧所对的圆心角和圆周角分别为(2x+100)°和(5x-30)°,则x=_ _;3. 如图,在直径为AB的半圆中,O为圆心,C、D
为半圆上的两点,∠COD=50°,则
∠CAD=______;20°50°拓展练习如图,点P是⊙O外一点,点A、B、Q是⊙O上的点。(1)求证∠P< ∠AQB
(2)如果点P在⊙O内, ∠P与∠AQB有怎样的关系?为什么?再见Thanks