中小学教育资源及组卷应用平台
第18章 平行四边形(培优篇)
一、单选题(本大题共12小题,每小题3分,共36分)
1.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( )
A. B. C.5 D.4
2.在中,,于点,点为的中点,若,则的度数是( )
A. B. C. D.
3.如图,在中,、的平分线BE、CF分别与AD相交于点E、F,BE与CF相交于点G,若,,BC=10,,则BE的长为( )
A. B.8 C. D.10
4.如图,在平行四边形中,过点作于,作于,且,,,则平行四边形的面积是( )
A. B. C. D.
5.如图,直线PQ是矩形ABCD的一条对称轴,点E在AB边上,将△ADE沿DE折叠,点A恰好落在CE与PQ的交点F处,若S△DEC=4,则AD的长为( )
A.4 B.2 C.4 D.2
6.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为( ).【来源:21·世纪·教育·网】
A. B. C. D.
7.矩形ABCD与ECFG如图放置,点B,C,F共线,点C,E,D共线,连接AG,取AG的中点H,连接EH.若,,则( )
A. B.2 C. D.
8.将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF,若AB=3,则菱形AECF的面积为( )
A.1 B.2 C.2 D.4
9.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A2017的坐标是( )
A.(0,21008) B.(21008,21008) C.(21009,0) D.(21009,-21009)
10.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF长为( )
A.2 B.3 C. D.
11.如图,在矩形ABCD中,点O为对角线的交点,点E为CD上一点,沿BE折叠,点C恰好与点O重合,点G为BD上的一动点,则EG+CG的最小值m与BC的数量关系是( )
A.m=BC B.m=BC C.m=BC D.2m=BC
12.如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=( )
A. B. C. D.
二、填空题(本大题共6小题,每小题4分,共24分)
13.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为_____.
14.如图,在中,,斜边,过点C作,以为边作菱形,若,则的面积为________.
15.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,是平行四边形的对角线,点在上,,,则的大小是________.
16.如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒1个单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.2-1-c-n-j-y
17.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为_____.
18.如图,M、N是正方形ABCD的边CD上的两个动点,满足,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是______.
三、解答题(本大题共6小题,共60分)
19.(8分)如图,在口ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.
(1)求证:△ABF≌△EDA;
(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.
20.(8分)如图1,在 ABCD中,∠D=45°,E为BC上一点,连接AC,AE,
(1)若AB=2,AE=4,求BE的长;
(2)如图2,过C作CM⊥AD于M,F为AE上一点,CA=CF,且∠ACF=∠BAE,求证:AF+AB=AM.www.21-cn-jy.com
21.(10分)在△ABC中,点D、E分别在边AC、BC上(不与点A、B、C重合),点P是直线AB上的任意一点(不与点A、B重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.
(1)如图,当点P在线段AB上运动,且n=90°时
①若PD∥BC,PE∥AC,则m=_____;
②若m=50°,求x+y的值.
(2)当点P在直线AB上运动时,直接写出x、y、m、n之间的数量关系.
22.(10分)如图,矩形中,点在边上,将沿折叠,点落在边上的点处,过点作交于点,连接.【来源:21cnj*y.co*m】
(1)求证:四边形是菱形;
(2)若,求四边形的面积.
23.(12分)(1)如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,求证:EF=BE+FD;
(2)如图2,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足什么关系时,仍有EF=BE+FD,说明理由.
(3)如图3,四边形ABCD中,∠BAD≠90°,AB=AD,AC平分∠BCD,AE⊥BC于E,AF⊥CD交CD延长线于F,若BC=8,CD=3,则CE= .(不需证明)
24.(12分)(1)【发现证明】
如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.21·cn·jy·com
(2)【类比引申】
①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)
②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)
(3)【联想拓展】如图1,若正方形的边长为6,,求的长.
参考答案
1.A
【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.21世纪教育网版权所有
【详解】
∵四边形ABCD是菱形,
∴AO=OC,BO=OD,AC⊥BD,
∵AC=8,DB=6,
∴AO=4,OB=3,∠AOB=90°,
由勾股定理得:AB==5,
∵S菱形ABCD=,
∴,
∴DH=,
故选:A.
【点拨】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD= ×AC×BD=AB×DH是解此题的关键.
2.D
【分析】连结CE,并延长CE,交BA的延长线于点N,根据已知条件和平行四边形的性质可证明△NAE≌△CFE,所以NE=CE,NA=CF,再由已知条件CD⊥AB于D,∠ADE=50°,即可求出∠B的度数.
【详解】
解:连结CE,并延长CE,交BA的延长线于点N,
∵四边形ABCF是平行四边形,
∴AB∥CF,AB=CF,
∴∠NAE=∠F,
∵点E是的AF中点,
∴AE=FE,
在△NAE和△CFE中,
,
∴△NAE≌△CFE(ASA),
∴NE=CE,NA=CF,
∵AB=CF,
∴NA=AB,即BN=2AB,
∵BC=2AB,
∴BC=BN,∠N=∠NCB,
∵CD⊥AB于D,即∠NDC=90°且NE=CE,
∴DE=NC=NE,
∴∠N=∠NDE=50°=∠NCB,
∴∠B=80°.
故选:D.
【点拨】本题考查了平行四边形的性质,综合性较强,难度较大,解答本题的关键是正确作出辅助线,构造全等三角形,在利用等腰三角形的性质解答.21*cnjy*com
3.C
【分析】根据平行四边形两组对边分别平行可得∠ABC+∠BCD=180°,再根据角平分线的性质可得∠EBC+∠FCB=90°,可得BE⊥CF;过A作AM∥FC,交BC于M,交BE于O,证明△ABE是等腰三角形,进而得到BO=EO,再利用勾股定理计算出EO的长,进而可得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABC+∠BCD=180°,
∵∠ABC、∠BCD的平分线BE、CF分别与AD相交于点E、F,
∴∠EBC+∠FCB=∠ABC+ ∠DCB=90°,
∴EB⊥FC,
∴∠FGB=90°.
过A作AM∥FC,交BC于M,交BE于O,如图所示:
∵AM∥FC,
∴∠AOB=∠FGB=90°,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∵AD∥BC,
∴∠AEB=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE=6,
∵AO⊥BE,
∴BO=EO,
在△AOE和△MOB中,
,
∴△AOE≌△MOB(ASA),
∴AO=MO,
∵AF∥CM,AM∥FC,
∴四边形AMCF是平行四边形,
∴AM=FC=4,
∴AO=2,
∴EO=,
∴BE=8.
故选:C.
【点拨】此题考查了平行四边形的性质与判定、全等三角形的判定与性质、等腰三角形的判定和性质以及勾股定理;证明AO=MO,BO=EO是解决问题的关键.
4.A
【分析】设,先根据平行四边形的性质可得,再根据直角三角形的两锐角互余、角的和差可得,然后根据等腰直角三角形的判定与性质、勾股定理可得,从而可得,最后利用平行四边形的面积公式即可得.21·世纪*教育网
【详解】
设,
四边形ABCD是平行四边形,
,
,
,
又,
,
解得,
即,
是等腰直角三角形,
,
,
平行四边形ABCD的面积是,
故选:A.
【点拨】本题考查了平行四边形的性质、直角三角形的两锐角互余、等腰直角三角形的判定与性质、勾股定理等知识点,熟练掌握平行四边形的性质是解题关键.
5.D
【分析】根据矩形的性质和折叠的性质可得∠ADE=∠EDF=∠CDF=30°,再根据三角形面积公式可求AD的长.【版权所有:21教育】
【详解】
解:∵四边形ABCD是矩形,
∴∠A=90°,
∵直线PQ是矩形ABCD的一条对称轴,
∴∠DGF=90°,CD∥PQ,DG=AD,
由折叠得∠EFD=∠A=90°,DF=AD,∠EDF=∠ADE,
∴∠CFD=90°,
∵EF=CF,
∴∠EDF=∠CDF,
∴∠ADE=∠EDF=∠CDF=30°,
∴EF=DF,
∴EC=AD,
∵S△DEC=4,
∴AD×AD÷2=4,
解得AD=2.
故选:D.
【点拨】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是求出∠ADE=∠EDF=∠CDF=30°.21教育名师原创作品
6.B
【分析】取AB的中点M,连接CM,EM,当CE=CM+EM时,CE的值最大,根据旋转的性质得到AC′=AC=2,由三角形的中位线的性质得到EMAC′=1,根据勾股定理得到AB=2,即可得到结论.
【详解】
取AB的中点M,连接CM,EM,∴当CE=CM+EM时,CE的值最大.
∵将直角边AC绕A点逆时针旋转至AC′,∴AC′=AC=2.
∵E为BC′的中点,∴EMAC′=1.
∵∠ACB=90°,AC=BC=2,∴AB=2,∴CMAB,∴CE=CM+EM.
故选B.
【点拨】本题考查了旋转的性质,直角三角形的性质,三角形的中位线的性质,正确的作出辅助线是解题的关键.21*cnjy*com
7.A
【分析】延长GE交AB于点R,连接AE,设AG交DE于点M,过点E作EN⊥AG于N,先计算出RG=6,∠ARG=,AR=2,根据勾股定理求出,得到HG=,利用,求出,即可利用勾股定理求出NG、EH.
【详解】
如图,延长GE交AB于点R,连接AE,设AG交DE于点M,过点E作EN⊥AG于N,
∵矩形ABCD与ECFG如图放置,点B,C,F共线,点C,E,D共线,
∴RG=BF=BC+CF=2+4=6,∠ARG=,AR=AR-CE=4-2=2,
∴,
∵H是AG中点,
∴HG=,
∵,
∴,
∴,
在Rt△ENG中, ,
∴,
∴,
故选:A.
【点拨】此题考查矩形的性质,勾股定理,线段中点的性质,三角形面积法求线段长度,熟记矩形的性质及熟练运用勾股定理是解题的关键.
8.C
【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.
【详解】
解:∵四边形AECF是菱形,AB=3,
∴假设BE=x,则AE=3﹣x,CE=3﹣x,
∵四边形AECF是菱形,
∴∠FCO=∠ECO,
∵∠ECO=∠ECB,
∴∠ECO=∠ECB=∠FCO=30°,
2BE=CE,
∴CE=2x,
∴2x=3﹣x,
解得:x=1,
∴CE=2,利用勾股定理得出:
BC2+BE2=EC2,
BC===,
又∵AE=AB﹣BE=3﹣1=2,
则菱形的面积是:AEBC=2.
故选C.
【点拨】本题考查折叠问题以及勾股定理.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
9.B
【分析】根据正方形性质和平面直角坐标系特点,观察点的坐标规律即可解答.
【详解】
解:观察,发现:A(0,1)、A1(1,1),A2(2,0),A3(2, 2),A4(0, 4),A5( 4, 4),A6( 8,0),A7( 8,8),A8(0,16),A9(16,16)…,
∴A8n+1(24n,24n)(n为自然数);
∵2017=252×8+1,
∴A2017(2252×4,2252×4),即点A2017的坐标是(21008,21008).
故选B.
【点拨】本题考查了正方形性质和平面直角坐标系特点,属于规律型题目,熟练掌握正方形的性质、找准规律是解题的关键.
10.A
【分析】如图,延长FD到G,使DG=BE,连接CG、EF,证△GCF≌△ECF,得到GF=EF,再利用勾股定理计算即可.
【详解】
解:如图,延长FD到G,使DG=BE,连接CG、EF
∵四边形ABCD为正方形,在△BCE与△DCG中,∵CB=CD,∠CBE=∠CDG,BE=DG,∴△BCE≌△DCG(SAS)
∴CG=CE,∠DCG=∠BCE
∴∠GCF=45°
在△GCF与△ECF中
∵GC=EC,∠GCF=∠ECF,CF=CF
∴△GCF≌△ECF(SAS)
∴GF=EF
∵CE=,CB=6
∴BE===3
∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x
∴EF==
∴
∴x=4,即AF=4
∴GF=5
∴DF=2
∴CF===
故选A.
【点拨】本题考查1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质,作出辅助线构造全等三角形是解题的关键.
11.C
【分析】是等边三角形,延长交于,连接交于,连接,由题意、关于对称,推出,当、、共线时,的值最小,最小值为的长.
【详解】
如图,由题意,,
是等边三角形,
延长交于,连接交于,连接,
由题意、关于对称,
,
当、、共线时,的值最小,最小值为的长,
设,,
在中,,,
,
在中,,
,
,
.
故选:.
【点拨】本题考查轴对称-最短问题,翻折变换,矩形的性质等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.
12.A
【详解】
试题解析:作G′I⊥CD于I,G′R⊥BC于R,E′H⊥BC交BC的延长线于H.连接RF′.则四边形RCIG′是正方形.
∵∠DG′F′=∠IGR=90°,∴∠DG′I=∠RG′F′,在△G′ID和△G′RF中,∵G′D= G′F,∠D G′I=∠R G′F′,G′I= G′R,∴△G′ID≌△G′RF,∴∠G′ID=∠G′RF′=90°,∴点F′在线段BC上,在Rt△E′F′H中,∵E′F′=2,∠E′F′H=30°,∴E′H=E′F′=1,F′H=,易证△RG′F′≌△HF′E′,∴RF′=E′H,RG′RC=F′H,∴CH=RF′=E′H,∴CE′=,∵RG′=HF′=,∴CG′=RG′=,∴CE′+CG′=.
故选A.
13.
【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN=x,BN=FN=,最后利用勾股定理计算x的值,可得BC的长.
【详解】
设EF=x,
∵点E、点F分别是OA、OD的中点,
∴EF是△OAD的中位线,
∴AD=2x,AD∥EF,
∴∠CAD=∠CEF=45°,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=2x,
∴∠ACB=∠CAD=45°,
∵EM⊥BC,
∴∠EMC=90°,
∴△EMC是等腰直角三角形,
∴∠CEM=45°,
连接BE,
∵AB=OB,AE=OE
∴BE⊥AO
∴∠BEM=45°,
∴BM=EM=MC=x,
∴BM=FE,
易得△ENF≌△MNB,
∴EN=MN=x,BN=FN=,
Rt△BNM中,由勾股定理得:BN2=BM2+MN2,
∴()2=x2+(x)2,
x=2或-2(舍),
∴BC=2x=4.
故答案为4.
【点拨】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.
14.
【分析】如下图,先利用直角三角形中30°角的性质求出HE的长度,然后利用平行线间的距离处处相等,可得CG的长度,即可求出直角三角形ABC面积.
【详解】
如图,分别过点E、C作EH、CG垂直AB,垂足为点H、G,
∵根据题意四边形ABEF为菱形,
∴AB=BE=,
又∵∠ABE=30°
∴在RT△BHE中,EH=,
根据题意,AB∥CF,
根据平行线间的距离处处相等,
∴HE=CG=,
∴的面积为.
【点拨】本题的辅助线是解答本题的关键,通过辅助线,利用直角三角形中的30°角所对直角边是斜边一半的性质,求出HE,再利用平行线间的距离处处相等这一知识点得到HE=CG,最终求出直角三角形面积.2·1·c·n·j·y
15.26°.
【分析】设∠BAC=x,然后结合平行四边形的性质和已知条件用x表示出∠EBA、∠BEC、 ∠BCE、 ∠BEC、 ∠DCA、∠DCB,最后根据两直线平行同旁内角互补,列方程求出x即可.21教育网
【详解】
解:设∠BAC=x
∵平行四边形的对角线
∴DC//AB,AD=BC,AD//BC
∴∠DCA=∠BAC=x
∵AE=BE
∴∠EBA =∠BAC=x
∴∠BEC=2x
∵
∴BE=BC
∴∠BCE=∠BEC =2x
∴∠DCB=∠BCE+∠DCA=3x
∵AD//BC,
∴∠D+∠DCB=180°,即102°+3x=180°,解得x=26°.
故答案为26°.
【点拨】本题主要考查了平行四边形的性质、等腰三角形的判定和性质,运用平行四边形结合已知条件判定等腰三角形和掌握方程思想是解答本题的关键.
16.2或.
【分析】分别从当Q运动到E和B之间与当Q运动到E和C之间去分析, 根据平行四边形的性质, 可得方程, 继而可求得答案.
【详解】
解:E是BC的中点,
BE=CE=BC=12=6,
①当Q运动到E和C之间, 设运动时间为t, 则AP=t, DP=AD-AP=4-t, CQ=2t,EQ=CE-CQ=6-2t
t=6-2t,
解得: t=2;
②当Q运动到E和B之间,设运动时间为t,则AP=t, DP=AD-AP=4-t, CQ=2t,
EQ=CQ-CE=2t-6,
t=2t-6,
解得: t=6(舍),
③P点当D后再返回点A时候,Q运动到E和B之间,设运动时间为t,
则AP=4-(t-4)=8-t, EQ=2t-6,
8-t=2t-6,,
当运动时间t为2、秒时,以点P,Q,E,A为顶点的四边形是平行四边形.
故答案为: 2或.
【点拨】本题主要考查平行四边形的性质及解一元一次方程.
17.或4
【详解】
分析:当△A′EF为直角三角形时,存在两种情况:
①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;
②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.
详解:当△A′EF为直角三角形时,存在两种情况:
①当∠A'EF=90°时,如图1,
.
∵△A′BC与△ABC关于BC所在直线对称,
∴A'C=AC=4,∠ACB=∠A'CB,
∵点D,E分别为AC,BC的中点,
∴D、E是△ABC的中位线,
∴DE∥AB,
∴∠CDE=∠MAN=90°,
∴∠CDE=∠A'EF,
∴AC∥A'E,
∴∠ACB=∠A'EC,
∴∠A'CB=∠A'EC,
∴A'C=A'E=4,
Rt△A'CB中,∵E是斜边BC的中点,
∴BC=2A'E=8,
由勾股定理得:AB2=BC2-AC2,
∴AB=;
②当∠A'FE=90°时,如图2,
.
∵∠ADF=∠A=∠DFB=90°,
∴∠ABF=90°,
∵△A′BC与△ABC关于BC所在直线对称,
∴∠ABC=∠CBA'=45°,
∴△ABC是等腰直角三角形,
∴AB=AC=4;.
综上所述,AB的长为4或4;
故答案为4或4.
点睛:本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.
18.
【分析】先判断出≌,得出,进而判断出≌,得出,即可判断出,根据直角三角形斜边上的中线等于斜边的一半可得,利用勾股定理列式求出OC,然后根据三角形的三边关系可知当O、F、C三点共线时,CF的长度最小.
【详解】
如图,
在正方形ABCD中,,,,
在和中,
,
≌,
,
在和中,
,
≌,
,
,
,
,
,
取AD的中点O,连接OF、OC,
则,
在中,,
根据三角形的三边关系,,
当O、F、C三点共线时,CF的长度最小,
最小值,
故答案为.
【点拨】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系等,综合性较强,有一定的难度,确定出CF最小时点F的位置是解题关键.
19.(1)证明见解析;(2)证明见解析.
【详解】
分析:(1)证明AB=DE,FB=AD,∠ABF=∠ADE即可解决问题;
(2)只要证明FB⊥AD即可解决问题.
详(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,∠ABC=∠ADC,
∵BC=BF,CD=DE,
∴BF=AD,AB=DE,
∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF,
∴∠ADE=∠ABF,
在△ABF与△EDA中,
∵AB=DE,∠ABF=∠ADE,BF=AD
∴△ABF≌△EDA.
(2)证明:延长FB交AD于H.
∵AE⊥AF,
∴∠EAF=90°,
∵△ABF≌△EDA,
∴∠EAD=∠AFB,
∵∠EAD+∠FAH=90°,
∴∠FAH+∠AFB=90°,
∴∠AHF=90°,即FB⊥AD,
∵AD∥BC,
∴FB⊥BC.
点睛:本题考查平行四边形的性质、全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,学会添加常用辅助线,属于中考常考题型.
20.(1)2-2;(2)见解析
【分析】(1)如图(1),过A作AH⊥BC于H,解直角三角形即可得到结论;
(2)如图(2),在AM上截取MN=MC,在△ACF内以AF为底边作等腰直角三角形AFP,连接CP,根据平行线的性质函数三角形的内角和得到∠CAN=∠PAC,求得∠APC=∠FPC==135°=∠ANC,根据全等三角形的性质得到AP=AN,于是得到结论.【出处:21教育名师】
【详解】
解:(1)如图(1),过A作AH⊥BC于H,
在 ABCD中,∠D=∠B=45°,AB=2,
∴AH=BH=2,
∵AE=4,
∴EH==2,
∴BE=BH-EH=2-2;
(2)如图(2),在AM上截取MN=MC,在△ACF内以AF为底边作等腰直角三角形AFP,连接CP,www-2-1-cnjy-com
∵∠AFC+∠FAC+∠ACF=180°,∠B+∠FAC+∠BAF+∠CAN=180°,
∴∠AFC=∠B+∠CAN=45°+∠CAN,
∵∠FAC=∠FAP+∠PAC=45°+∠PAC,∴∠FAC=∠AFC,
∴∠CAN=∠PAC,
∵∠APC=∠FPC==135°=∠ANC,
∴△APC≌△ANC(AAS),
∴AP=AN,
∵AM=AN+MN,
∴AM=AN+MN=AF+CD=AF+AB,
即AF+AB=AM.
【点拨】考查了平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线解题的关键.
21.(1)①90°,②140°;(2)详见解析
【分析】(1)①证明四边形DPEC为平行四边形可得结论;②根据四边形内角和为360°,列等式求出x+y的值;
(2)根据P、D、E位置的不同,分五种情况:①y-x=m+n,如图2,点P在BA的延长线上时,根据三角形的内角和与外角定理列等式,化简后得出结论;②x-y=m-n,如图3,点P在BA的延长线上时,根据三角形的内角和与外角定理列等式,化简后得出结论;③x+y=m+n,如图4,点P在线段BA上时,根据四边形的内角和为360°列等式,化简后得出结论;④x-y=m+n,如图5,同理得出结论;⑤y-x=m-n,如图6,同理得出结论.
【详解】
解:(1)①如图1,
∵PD∥BC,PE∥AC,
∴四边形DPEC为平行四边形,
∴∠DPE=∠C,
∵∠DPE=m,∠C=n=90°,
∴m=90°;
②∵∠ADP=x,∠PEB=y,
∴∠CDP=180°-x,∠CEP=180°-y,
∵∠C+∠CDP+∠DPE+∠CEP=360°,∠C=90°,∠DPE=50°,
∴90°+180°-x+50°+180°-y=360°,
∴x+y=140°;
(2)分五种情况:
①y-x=m+n,如图2,
理由是:
∵∠DFP=n+∠FEC,∠FEC=180°﹣y,
∴∠DFP=n+180°﹣y,
∵x+m+∠DFP=180°,
∴x+m+n+180°﹣y=180°,
∴y﹣x=m+n;
②x-y=m-n,如图3,
理由是:
同理得:m+180°﹣x=n+180°﹣y,
∴x﹣y=m﹣n;
③x+y=m+n,如图4,
理由是:
由四边形内角和为360°得:180°﹣x+m+180°﹣y+n=360°,
∴x+y=m+n;
④x﹣y=m+n,如图5,
理由是:
同理得:180°=m+n+y+180°﹣x,
∴x﹣y=m+n;
⑤y﹣x=m﹣n,如图6,
理由是:
同理得:n+180°﹣x=m+180°﹣y,
∴y﹣x=m﹣n.
【点拨】本题考查了三角形综合及平行四边形的判定,熟练掌握三角形外角的性质及平行四边形的判定与性质是解题的关键.21cnjy.com
22.(1)详见解析;(2)
【分析】(1)根据题意可得,因此可得,又,则可得四边形是平行四边形,再根据可得四边形是菱形.
(2)设,则,再根据勾股定理可得x的值,进而计算出四边形的面积.
【详解】
(1)证明:由题意可得,
,
∴,
∵,
∴,
∴,
∴,
∴,
∴四边形是平行四边形,
又∵
∴四边形是菱形;
(2)∵矩形中, ,
∴,
∴,
∴,
设,则,
∵,
∴,
解得, ,
∴,
∴四边形的面积是:.
【点拨】本题主要考查菱形的判定,关键在于首先证明其是平行四边形,再证明两条临边相等即可.
23.(1)详见解析;(2)∠BAD=2∠EAF,理由详见解析;(3)5.5.
【分析】(1)将△ABE绕点A旋转使得AB与AD重合,然后证明△AFG≌△AFE,再利用全等三角形对应的边相等的性质不难证明;
(2)首先延长CB至M,使BM=DF,连接AM,构造△ABM≌△ADF,再证明△FAE≌△MAE,最后将相等的边进行转化整理即可证明.
【详解】
解(1)把△ABE绕点A逆时针旋转90°至△ADG,如图1所示:
则△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵∠EAF=45°,即∠DAF+∠BAE=∠EAF=45°,
∴∠GAF=∠FAE,
在△GAF和△FAE中, , ,
∴△AFG≌△AFE(SAS).
∴GF=EF.
又∵DG=BE,
∴GF=BE+DF,
∴BE+DF=EF.
(2)∠BAD=2∠EAF.理由如下:
如图2所示,延长CB至M,使BM=DF,连接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,,
∴△ABM≌△ADF(SAS)
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,,
∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,
即EF=BE+DF.
(3)∵AC平分∠BCD,AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90°,AE=AF,
在Rt△ABE和Rt△ADF中, ,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
同理:Rt△ACE≌Rt△ACF,
∴CE=CF,
∴BC+CD=BE+CE+CF-DF=2CE,
∵BC=8,CD=3,
∴CE=5.5,
故答案为:5.5.
【点拨】此题是四边形综合题,考查了正方形的性质、旋转的性质、全等三角形的判定与性质、角平分线的性质等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.
24.(1)见解析;(2)①不成立,结论:;②,见解析;(3)
【分析】(1)证明,可得出,则结论得证;
(2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;
(3)求出,设,则,,在中,得出关于的方程,解出则可得解.
【详解】
(1)证明:把绕点顺时针旋转至,如图1,
,,,
,
,,三点共线,
,
,
,
,
,
,
,
;
(2)①不成立,结论:;
证明:如图2,将绕点顺时针旋转至,
,,,,
,
,
,
;
②如图3,将绕点逆时针旋转至,
,,
,
,
,
,
,
,
.
即.
故答案为:.
(3)解:由(1)可知,
正方形的边长为6,
,
.
,
,
设,则,,
在中,
,
,
解得:.
,
.
【点拨】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)