2021-2022学年华师大版八年级数学下册《18-1平行四边形的性质》同步练习题(附答案)
一.选择题
1.如图,在 ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,若AB=4,AF=1,则BC的长是( )
A.4 B.5 C.7 D.6
2.如图,将 ABCD的一边BC延长至点E,若∠A=110°,则∠1等于( )
A.70° B.65° C.60° D.55°
3.如图,在 ABCD中,AC与BD相交于O点,E为AD的中点,连接OE.若OE=2,则CD的长度为( )
A.1 B.2 C.3 D.4
4.在平行四边形ABCD中,∠BAC=90°,AC=6,BD=12,则AB边的长为( )
A.3 B.4 C.6 D.8
5.如图,E为 ABCD外一点,且EB⊥BC于点B,ED⊥CD于点D,若∠E=55°,则∠A的度数为( )
A.135° B.125° C.55° D.35°
6.如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AEB的度数是( )
A.120° B.135° C.150° D.45°
二.填空题
7.在 ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为 .
8.如图,在 ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为 .
9.如图,在平行四边形ABCD中,∠ABC=135°,AD=4,AB=8,作对角线AC的垂直平分线EF,分别交对边AB、CD于点E和点F,则AE的长为 .
10.如图,在 ABCD中,AB=10,AD=6,AC⊥BC.则BD= .
11.在 ABCD中,AE平分∠BAD交边BC于E,DF平分∠ADC交边BC于F,若AD=11,EF=5,则AB= .
12.如图,在 ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=DE,以EC、EF为邻边构造 EFGC,连接EG,则EG的最小值为 .
13.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D为BC上一动点(不与点C重合),以AD,CD为一组邻边作平行四边形ADCE,当DE的值最小时,平行四边形ADCE周长为 .
14.如图,过平行四边形ABCD的对角找BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的平行四边形AEMG的面积S1与平行四边形HCFM的面积S2的大小关系是 .
15.如图,在平行四边形ABCD中,∠ABC=45°,AB=6,CB=14.点M,N分别是边AB,AD的中点,连接CM,BN,并取CM,BN的中点,分别记为点E,F,连接EF,则EF的长为 .
16.如图,在 ABCD中,对角线AC与BD相交于点O,过B作BE⊥AD于点E,已知AB=5,AD=7,BE=4,则OE= .
三.解答题
17.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.
(1)求证:BE=CD;
(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.
18.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.
(1)求证:AB=AF;
(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
19.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=8,DC=6,AD=10.动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒).
(1)若四边形ABQP为平行四边形,求运动时间t.
(2)当t为何值时,三角形BPQ是以BQ或BP为底边的等腰三角形?
20.如图, ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.
(1)求证:BO=DO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.
21.在 ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.
(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.
①求证:BE=BF.
②请判断△AGC的形状,并说明理由;
(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)
参考答案
一.选择题
1.解:∵四边形ABCD是平行四边形,
∴AD∥CB,AB=CD=4,AD=BC,
∴∠DFC=∠FCB,
又∵CF平分∠BCD,
∴∠DCF=∠FCB,
∴∠DFC=∠DCF,
∴DF=DC=4,
∵AF=1,
∴AD=4+1=5,
∴BC=5.
故选:B.
2.解:∵平行四边形ABCD的∠A=110°,
∴∠BCD=∠A=110°,
∴∠1=180°﹣∠BCD=180°﹣110°=70°.
故选:A.
3.解:∵四边形ABCD是平行四边形,
∴AO=CO,
∵点E是边CD的中点,
∴EO=CD,
∵OE,
∴CD=2OE=4,
故选:D.
4.解:∵ ABCD的对角线AC与BD相交于点O,
∴BO=DO,AO=CO,AB=CD,
∵∠BAC=90°,AC=6,BD=12,
∴BO=6,OA=3,
∴AB===3,
故选:A.
5.解:连接EC,如图所示:
∵EB⊥BC,ED⊥CD,
∴∠EBC=90°,∠EDC=90°,
又∵∠BEC+∠EBC+∠BCE=180°,
∠DEC+∠DCE+∠EDC=180°,
∠BED=∠BEC+DEC,
∠BCD=BCE+∠DCE,
∴∠EBC+∠BCD+∠EDC+∠BED=360°,
又∵∠BED=55°,
∴∠BCD=360°﹣90°﹣90°﹣55°=125°,
又∵四平形ABCD是平行四边形,
∴∠A=∠BCD=125°,
故选:B.
6.解:∵四边形ABCD是平行四边形,
∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,
∵AD=DE=CE,
∴AD=DE=CE=BC,
∴∠DAE=∠AED,∠CBE=∠CEB,
∵∠DEC=90°,
∴∠EDC=∠ECD=45°,
设∠DAE=∠AED=x,∠CBE=∠CEB=y,
∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,
∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y,
∴∠BAD=180°﹣(225°﹣2x)=2x﹣45°,
∴2x﹣45°=225°﹣2y,
∴x+y=135°,
∴∠AEB=360°﹣135°﹣90°=135°;
故选:B.
二.填空题
7.解:情形一:当E点在线段AD上时,如图所示,
∵BE是AD边上的高,∠EBD=20°,
∴∠ADB=90°﹣20°=70°,
∵AD=BD,
∴∠A=∠ABD==55°.
情形二:当E点在AD的延长线上时,如图所示,
∵BE是AD边上的高,∠EBD=20°,
∴∠BDE=70°,
∵AD=BD,
∴∠A=∠ABD=∠BDE=×70°=35°.
故答案为:55°或35°.
8.解:∵四边形ABCD是平行四边形,
∴∠ABC=∠D=100°,AB∥CD,
∴∠BAD=180°﹣∠D=80°,
∵AE平分∠DAB,
∴∠BAE=80°÷2=40°,
∵AE=AB,
∴∠ABE=(180°﹣40°)÷2=70°,
∴∠EBC=∠ABC﹣∠ABE=30°;
故答案为:30°.
9.解:如图,连接CE,过点C作CH⊥AB,交AB的延长线于H,
∵平行四边形ABCD中,∠ABC=135°,AD=4,
∴∠CBH=45°,BC=4,
又∵∠H=90°,
∴∠BCH=45°,
∴CH=BH=4,
设AE=x,则BE=8﹣x,
∵EF垂直平分AC,
∴CE=AE=x,
∵在Rt△CEH中,CH2+EH2=EC2,
∴42+(8﹣x+4)2=x2,
解得x=,
∴AE的长为.
故答案为:.
10.解:∵四边形ABCD是平行四边形,
∴BC=AD=6,OB=OD,OA=OC,
∵AC⊥BC,
∴AC==8,
∴OC=4,
∴OB==2,
∴BD=2OB=4
故答案为:4.
11.解:①如图1,在 ABCD中,∵BC=AD=11,BC∥AD,CD=AB,CD∥AB,
∴∠DAE=∠AEB,∠ADF=∠DFC,
∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,
∴∠BAE=∠DAE,∠ADF=∠CDF,
∴∠BAE=∠AEB,∠CFD=∠CDF,
∴AB=BE,CF=CD,
∴AB=BE=CF=CD
∵EF=5,
∴BC=BE+CF﹣EF=2AB﹣EF=2AB﹣5=11,
∴AB=8;
②在 ABCD中,∵BC=AD=11,BC∥AD,CD=AB,CD∥AB,
∴∠DAE=∠AEB,∠ADF=∠DFC,
∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,
∴∠BAE=∠DAE,∠ADF=∠CDF,
∴∠BAE=∠AEB,∠CFD=∠CDF,
∴AB=BE,CF=CD,
∴AB=BE=CF=CD
∵EF=5,
∴BC=BE+CF=2AB+EF=2AB+5=11,
∴AB=3;
综上所述:AB的长为8或3.
故答案为:8或3.
12.解:作CH⊥AB于点H,
∵在 ABCD中,∠B=60°,BC=8,
∴CH=4,
当EO取得最小值时,EG即可取得最小值,
当EO⊥CD时,EO取得最小值,
∴CH=EO,
∴EO=4,
∴GO=5,
∴EG的最小值是,
故答案为:9.
13.解:当DE⊥AE时,DE取得最小值,设此时CD=x,
∵四边形ADCE是平行四边形,
∴CD=AE,AD=CE,BC∥AE,
∵∠B=90°,DE⊥AE,
∴四边形BAED是矩形,
∴BD=AE,
∴BD=CD=x,
∵BC=BD+CD,BC=4,
∴BD=CD=2,
∵AB=3,∠B=90°,
∴AD===,
∴当DE的值最小时,平行四边形ADCE周长为:2++2+=4+2,
故答案为:4+2,
14.解:∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,
∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,
∴四边形HBEM、GMFD是平行四边形,
在△ABD和△CDB中,
,
∴△ABD≌△CDB(SSS),
即△ABD和△CDB的面积相等;
同理△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,
故四边形AEMG和四边形HCFM的面积相等,即S1=S2.
故答案为:S1=S2.
15.解:如图,连接BE交CD于点G,连接GN,过点G作GH⊥DN于点H,
∵四边形ABCD是平行四边形,
∴AD=CB=14,CD=AB=6,
∵点M,N分别是边AB,AD的中点,
∴AN=DN=AD=7,BM=AB=3,
∵AB∥CD,
∴∠BME=∠GCE,∠MBE=∠CGE,
∵点E是CM的中点,
∴ME=CE,
在△MEB和△CEG中,
,
∴△MEB≌△CEG(AAS),
∴BE=GE,BM=GC=3,
∴DG=CD﹣GC=3,
∵∠D=∠ABC=45°,GH⊥DN,
∴DH=GH=DG=3,
∴NH=DN﹣DH=7﹣3=4,
∴GN==5,
∵BF=FN,BE=EG,
∴EF是△BGN的中位线,
∴EF=GN=.
故答案为:.
16.解:∵BE⊥AD,AB=5,BE=4,
∴在Rt△ABE中,由勾股定理得AE=3,
∵AD=7,
∴ED=AD﹣AE=4,
∴在Rt△DBE中,由勾股定理得BD==4,
∵在 ABCD中,对角线AC与BD相交于点O,
∴O为BD的中点,
∴OE=BD=2,
故答案为:2.
三.解答题
17.(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,AB=CD,
∴∠AEB=∠DAE,
∵AE是∠BAD的平分线,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=CD;
(2)解:∵AB=BE,∠BEA=60°,
∴△ABE是等边三角形,
∴AE=AB=4,
∵BF⊥AE,
∴AF=EF=2,
∴BF===2,
∵AD∥BC,
∴∠D=∠ECF,∠DAF=∠E,
在△ADF和△ECF中,
,
∴△ADF≌△ECF(AAS),
∴△ADF的面积=△ECF的面积,
∴平行四边形ABCD的面积=△ABE的面积=AE BF=×4×2=4.
18.(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠AFC=∠DCG,
∵GA=GD,∠AGF=∠CGD,
∴△AGF≌△DGC,
∴AF=CD,
∴AB=AF.
(2)解:结论:四边形ACDF是矩形.
理由:∵AF=CD,AF∥CD,
∴四边形ACDF是平行四边形,
∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=120°,
∴∠FAG=60°,
∵AB=AG=AF,
∴△AFG是等边三角形,
∴AG=GF,
∵△AGF≌△DGC,
∴FG=CG,∵AG=GD,
∴AD=CF,
∴四边形ACDF是矩形.
19.解:(1)∵四边形ABQP为平行四边形,
∴AP=BQ,
又∵AP=AD﹣PD=10﹣2t,
BQ=BC﹣CQ=8﹣t,
∴10﹣2t=8﹣t,
解得t=2;
(2)如图,过P作PE⊥BC于E,
当∠BQP为顶角时,QB=QP,BQ=8﹣t,PE=CD=6,EQ=CE﹣CQ=2t﹣t,
依据BQ2=PQ2有:(8﹣t)2=62+(2t﹣t)2,
解得 t=;
当∠BPQ为顶角时,PB=PQ,
由BQ=2EQ有:8﹣t=2(2t﹣t),
解得t=,
综上,t=或t=时,符合题意.
20.(1)证明:∵四边形ABCD是平行四边形,
∴DC=AB,DC∥AB,
∴∠ODF=∠OBE,
在△ODF与△OBE中
∴△ODF≌△OBE(AAS)
∴BO=DO;
(2)解:∵BD⊥AD,
∴∠ADB=90°,
∵∠A=45°,
∴∠DBA=∠A=45°,
∵EF⊥AB,
∴∠G=∠A=45°,
∴△ODG是等腰直角三角形,
∵AB∥CD,EF⊥AB,
∴DF⊥OG,
∴OF=FG,△DFG是等腰直角三角形,
∵△ODF≌△OBE(AAS)
∴OE=OF,
∴GF=OF=OE,
即2FG=EF,
∵△DFG是等腰直角三角形,
∴DF=FG=1,∴DG==DO,
∴在等腰Rt△ADB 中,DB=2DO=2=AD
∴AD=2,
21.(1)证明:①∵四边形ABCD是平行四边形,∠ADC=90°,
∴四边形ABCD是矩形,
∴∠ABC=90°,AB∥DC,AD∥BC,
∴∠F=∠FDC,∠BEF=∠ADF,
∵DF是∠ADC的平分线,
∴∠ADF=∠FDC,
∴∠F=∠BEF,
∴BF=BE;
②△AGC是等腰直角三角形.
理由如下:连接BG,
由①知,BF=BE,∠FBC=90°,
∴∠F=∠BEF=45°,
∵G是EF的中点,
∴BG=FG,∠F=∠CBG=45°,
∵∠FAD=90°,
∴AF=AD,
又∵AD=BC,
∴AF=BC,
在△AFG和△CBG中,
,
∴△AFG≌△CBG(SAS),
∴AG=CG,
∴∠FAG=∠BCG,
又∵∠FAG+∠GAC+∠ACB=90°,
∴∠BCG+∠GAC+∠ACB=90°,
即∠GAC+∠ACG=90°,
∴∠AGC=90°,
∴△AGC是等腰直角三角形;
(2)连接BG,∵FB绕点F顺时针旋转60°至FG,
∴△BFG是等边三角形,
∴FG=BG,∠FBG=60°,
又∵四边形ABCD是平行四边形,∠ADC=60°,
∴∠ABC=∠ADC=60°
∴∠CBG=180°﹣∠FBG﹣∠ABC=180°﹣60°﹣60°=60°,
∴∠AFG=∠CBG,
∵DF是∠ADC的平分线,
∴∠ADF=∠FDC,
∵AB∥DC,
∴∠AFD=∠FDC,
∴∠AFD=∠ADF,
∴AF=AD,
在△AFG和△CBG中,
,
∴△AFG≌△CBG(SAS),
∴AG=CG,∠FAG=∠BCG,
在△ABC中,∠GAC+∠ACG=∠ACB+∠BCG+∠GAC=∠ACB+∠BAG+∠GAC=∠ACB+∠BAC=180°﹣60°=120°,
∴∠AGC=180°﹣(∠GAC+∠ACG)=180°﹣120°=60°,
∴△AGC是等边三角形.