2021-2022学年人教版七年级数学下册 第八章 二元一次方程组
8.3 实际问题与二元一次方程组(工程问题、分配问题) 课后练习
一、选择题
1.某污水处理厂库池里现有待处理的污水m吨.另有从城区流入库池的待处理污水(新流入污水按每小时n吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )
A.6台 B.7台 C.8台 D.9台
2.在一块a公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,要比10个人插秧提前3天完成,一台插秧机的工作效率是一个人工作效率的( )倍.
A. B. C. D.
3.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人.下面所列的方程组正确的是( )
A. B. C. D.
4.某市准备对一段长120m的河道进行清淤疏通,若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队单独工作8天,则余下的任务由乙工程队单独完成需要3天;设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则(x+y)的值为( )
A.20 B.15 C.10 D.5
5.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,应分配挖土和运土的人分别是
A.12人,15人 B.14人,13人 C.15人,12人 D.13人,14人
6.大课间,12人跳绳队为尊重每个队员的意愿,准备把队员分成跳大绳组或跳小绳组,大绳组3人一组,小绳组2人一组,在全队同学能同时参加活动且符合小组规定人数的前提下,则不同的分组方法有( )
A.1种 B.2种 C.3种 D.4种
7.为响应“科教兴国”的战略号召,某学校计划成立创客实验室,现需购买航拍无人机和编程机器人,已知购买2架航拍无人机和3个编程机器人所需费用相同,购买4个航拍无人机和7个编程机器人共需3480元,设购买1架航拍无人机需x元,购买1个编程机器人需y元,则可列方程组为( )
A. B. C. D.
8.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为( )
A. B.
C. D.
9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )
A.50人,40人 B.30人,60人
C.40人,50人 D.60人,30人
10.有大小两种货车,2辆大货车与3辆小货车一次可运货15.5吨,5辆大货车与6辆小货车一次可运货35吨,6辆大货车和10辆小货车一次可运货( )吨.
A.55 B.50.5 C.50 D.49
二、填空题
11.某车间有660名工人,生产某种由一个螺栓和两个螺母构成的配套产品,每人每天平均生产螺栓14个或螺母20个,应安排______________人生产螺母,才能使生产出的螺栓和螺母刚好配套.
12.用块型钢板可制成件甲种产品和件乙种产品;用块型钢板可制成件甲种产品和件乙种产品;要生产甲种产品件,乙种产品件,则恰好需用两种型号的钢板共__________块.
13.甲、乙、丙三人在A、B两块地植树,其中甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地.已知甲、乙、丙每小时分别能植树10棵,8棵,12棵.若乙在A地植树12小时后立即转到B地,则两块地同时开始同时结束;若要两块地同时开始,但A地比B地早6小时完成,则乙应在A地植树______小时后立即转到B地.
14.一水池有一个进水管和三个完全相同的出水管,现水池中有一定量的水,打开进水管(注水速度一致),若只打开一个出水管,则1小时正好能把水池中的水放完;若打开两个出水管,则20分钟正好能把水池中的水放完;问若打开三个出水管,则需要__________分钟恰好能把水池中的水放完.
15.某工程队承包了某段全长1800米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进,已知甲组比乙组平均每天多掘进2米,经过5天施工,两组共掘进了60米,为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进2米,乙组平均每天能比原来多掘进1米,按此施工进度,能够比原来少用______天完成任务.
三、解答题
16.甲乙两人同时加工一批零件,前3小时两人共加工126件,后5小时中甲先花了1小时修理工具,之后甲每小时比以前多加工10件,结果在后5小时内,甲比乙多加工了10件.甲、乙两人原来每小时各加工多少件?
17.某学校学生乘车外出春游.若每辆汽车乘45人.则15人没有座位,若每辆汽车乘80人,则正好空出一辆汽车,问共有多少个学生?有几辆汽车?
18.某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住10人,小宿舍每间可住8人,该校420名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.
19.学校计划从某花卉供应商家定制一批花卉来装扮校园(花盆全部为同一型号),该商家委托某货运公司负责这批花卉的运输工作.该货运公司有甲、乙两种专门运输花卉的货车,已知1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;2辆甲型货车比3辆乙型货车满载一次少运输200盆花卉.1辆甲型货车满载一次可运输多少盆花卉?1辆乙型货车满载一次可运输多少盆花卉?
20.一套餐桌有一张桌子和六把椅子组成.如果1立方米木料可以制作10张桌子,或制作15把椅子.现有15立方米的木料,请你设计一下,用多少立方米的木料做桌子,多少立方米的木料做椅子,恰好配套成餐桌?
21.在某外环公路改建工程中,某路段长6140米,现准备由甲、乙两个工程队拟在25天内(含25天)合作完成,已知两个工程队各有20名工人(设甲、乙两个工程队的工人全部参与生产,甲工程队每人每天工作量相同,乙工程队每人每天工作量相同),甲工程队1天、乙工程队2天共修路400米;甲工程队2天、乙工程队3天共修路700米.
(1)试问:甲、乙两个工程队每天分别修路多少米
(2)甲、乙两个工程队施工8天后,由于工作需要需从甲队调离m人去其他工程工作,总部要求在规定时间内完成,请问:甲工程队最多可以调离多少人
22.青山化工厂与A、B两地有公路、铁路相连这家工厂从A地购买一批每吨1000元的原料经铁路120km和公路10km运回工厂,制成每吨8000元的产品经铁路110km和公路20km销售到B地,已知铁路的运价为1.2元/(吨·千米),公路的运价为1.5元/(吨·千米),且这两次运输共支出铁路运124800元,公路运费19500元.
(1)设原料重x吨,产品重y吨,根据题中数量关系填写下表(表格内填化简的结果).
原料x吨 产品y吨 合计(元)
铁路运费
公路运费
根据上表列方程组求原料和产品的重量.
(2)这批产品的销售款比原料费与运输费的和多多少元?
23.某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.
(1)甲、乙两组工作一天,商店各应付多少钱?
(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?
(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)
【参考答案】
1.B 2.C 3.B 4.A 5.C 6.C 7.A 8.C 9.C 10.D
11.385
12.
13.17
14.12
15.29
16.甲、乙两人原来每小时分别加工20,22件
17.共有240个学生,有5辆汽车
18.大宿舍有10间,小宿舍有40间
19.1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉.
20.用3立方米的木料做桌子,12立方米的木料做椅子,恰好配套成餐桌.
21.(1)甲、乙两工程队每天分别修路200米和100米;(2)8人
22.(1);;124800;;;19500;(2)2555700元.
23.(1)甲组工作一天商店应付300元,乙组工作一天商店应付140元;(2)单独请乙组,商店所付费用较少;(3)安排甲、乙两个装修组同时施工更有利于商店.