(共45张PPT)
HS九(下)
教学课件
27.2 与圆有关的位置关系
第2课时 切线长定理及三角形的内切圆
3. 切线
学习目标
1.掌握切线长的定义及切线长定理.(重点)
2.初步学会运用切线长定理进行计算与证明.
(难点)
同学们玩过空竹和悠悠球吗?在空竹和悠悠球的旋转的那一瞬间,你能从中抽象出什么样数学图形?
问题1 上节课我们学习了过圆上一点作已知圆的切线(如左图所示),如果点P是圆外一点,又怎么作该圆的切线呢?过圆外的一点作圆的切线,可以作几条?
P
O
B
A
O.
P
A
B
切线长定理及应用
1
P
1.切线长的定义:
切线上一点到切点之间的线段的长叫作这点到圆的切线长.
A
O
①切线是直线,不能度量.
②切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.
2.切线长与切线的区别在哪里?
问题2 PA为☉O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B.
OB是☉O的一条半径吗?
PB是☉O的切线吗?
(利用图形轴对称性解释)
PA、PB有何关系?
∠APO和∠BPO有何关系?
O.
P
A
B
B
P
O
A
切线长定理:
过圆外一点作圆的两条切线,两条切线长相等.圆心与这一点的连线平分两条切线的夹角.
PA、PB分别切☉O于A、B
PA = PB
∠OPA=∠OPB
几何语言:
注意:切线长定理为证明线段相等、角相等提供了新的方法.
知识要点
O.
P
已知,如图PA、PB是☉O的两条切线,A、B为切点.
求证:PA=PB,∠APO=∠BPO.
证明:∵PA切☉O于点A,
∴ OA⊥PA.
同理可得OB⊥PB.
∵OA=OB,OP=OP,
∴Rt△OAP≌Rt△OBP,
∴PA=PB,∠APO=∠BPO.
A
B
推理验证
想一想:若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论 并给出证明.
OP垂直平分AB.
证明:∵PA,PB是⊙O的切线,点A,B是切点
∴PA = PB ,∠OPA=∠OPB
∴△PAB是等腰三角形,PM为顶角的平分线
∴OP垂直平分AB.
O.
P
A
B
M
想一想:若延长PO交⊙O于点C,连结CA、CB,你又能得出什么新的结论 并给出证明.
证明:∵PA,PB是⊙O的切线,点A,B是切点,
∴PA = PB ,∠OPA=∠OPB.
∴PC=PC.
∴ △PCA ≌ △PCB,
∴AC=BC.
CA=CB
O.
P
A
B
C
已知:如图,四边形ABCD的边AB、BC、CD、
DA与⊙O分别相切与点E、F、G、H.
求证:AB+CD=AD+BC.
·
A
B
C
D
O
证明:∵AB、BC、CD、DA与⊙O分别相切与点E、F、G、H,
E
F
G
H
∴ AE=AH,BE=BF,CG=CF,DG=DH.
∴ AE+BE+CG+DG=AH+BF+CF+DH.
∴AB+CD=AD+BC.
例1
为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5cm,求铁环的半径.
解析:欲求半径OP,取圆的圆心为O,连结OA,OP,由切线性质知△OPA为直角三角形,从而在Rt△OPA中由勾股定理易求得半径.
O
例2
在Rt△OPA中,PA=5,∠POA=30°,
O
Q
解:过O作OQ⊥AB于Q,设铁环的圆心
为O,连结OP、OA.
∵AP、AQ为⊙O的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.
又∠BAC=60°,∠PAO+∠QAO+∠BAC=180°,∴∠PAO=∠QAO=60°.
即铁环的半径为
1.PA、PB是☉O的两条切线,A、B为切点,直线OP交☉O于点D、E,交AB于C.
(1)写出图中所有的垂直关系;
OA⊥PA,OB ⊥PB,AB ⊥OP.
(3)写出图中所有的全等三角形;
△AOP≌ △BOP, △AOC≌ △BOC, △ACP≌ △BCP.
(4)写出图中所有的等腰三角形.
△ABP △AOB
(2)写出图中与∠OAC相等的角;
∠OAC=∠OBC=∠APC=∠BPC.
B
P
O
A
C
E
D
B
P
O
A
2.PA、PB是☉O的两条切线,A,B是切点,OA=3.
(1)若AP=4,则OP= ;
(2)若∠BPA=60 °,则OP= .
5
6
3.如图,PA、PB是☉O的两条切线,点A、B是切点,在弧AB上任取一点C,过点C作☉O的切线,分别交PA、PB于点D、E.已知PA=7,∠P=40°.则
⑵ ∠DOE= .
⑴ △PDE的周长是 ;
14
O
P
A
B
C
E
D
70°
解析:连结OA、OB、OC、OD和OE.
∵PA、PB是☉O的两条切线,点A、B是切点,∴PA=PB=7.∠PAO=∠PBO=90°. ∠AOB=360°-∠PAO-∠PBO-∠P=140°.
又∵DC、DA是☉O的两条切线,点C、A是切点,∴DC=DA.同理可得CE=CB.
O
P
A
B
C
E
D
∵D,E是切线PA,PB上的点,
∴∠DOC=∠DOA= ∠AOC.
∠DOE=∠DOC+∠COE= (∠AOC+∠COB)=70°.
∴∠COE=∠BOE= ∠AOC.
∴S△PDE=PD+DE+PE=PD+DC+CE+PE=PA+PB=14.
切线长问题辅助线添加方法:
(1)分别连接圆心和切点;
(2)连接两切点;
(3)连接圆心和圆外一点.
方法归纳
小明在一家木料厂上班,工作之余想对厂里的三角形废料进行加工:裁下一块圆形用料,怎样才能使裁下的圆的面积尽可能大呢?
三角形的内切圆及作法
2
问题1 如果最大圆存在,它与三角形三边应有怎样的位置关系?
O
O
O
O
最大的圆与三角形三边都相切
三角形角平分线的这个性质,你还记得吗?
问题2 如何求作一个圆,使它与已知三角形的三边都相切?
(1) 如果半径为r的☉I与△ABC的三边都相切,那么圆心I应满足什么条件?
(2) 在△ABC的内部,如何找到满足条件的圆心I呢?
圆心I到三角形三边的距离相等,都等于r.
三角形三条角平分线交于一点,这一点与三角形的三边距离相等.
圆心I应是三角形的三条角平分线的交点.
为什么呢?
已知:△ABC.
求作:和△ABC的各边都相切的圆.
M
N
D
作法:
1.作∠B和∠C的平分线BM和CN,交点为O.
2.过点O作OD⊥BC.垂足为D.
3.以O为圆心,OD为半径作圆O.
☉O就是所求的圆.
1.与三角形三边都相切的圆叫作三角形的内切圆.
2.三角形内切圆的圆心叫做这个三角形的内心.
3.这个三角形叫做这个圆的外切三角形.
B
A
C
I
☉I是△ABC的内切圆,点I是△ABC的内心,△ABC是☉I的外切三角形.
B
A
C
I
问题1 如图,☉I是△ABC的内切圆,那么线段OA,OB ,OC有什么特点?
线段OA,OB ,OC 分别是∠A,∠B,∠C的平分线.
三角形的内心的性质
3
B
A
C
I
问题2 如图,分别过点作AB、AC、BC的垂线,垂足分别为E、F,G,那么线段IE、IF、IG之间有什么关系?
E
F
G
IE=IF=IG
三角形内心的性质
三角形的内心在三角形的角平分线上.
三角形的内心到三角形的三边距离相等.
B
A
C
I
E
F
G
IA,IB,IC是△ABC的角平分线,IE=IF=IG.
如图,△ABC中,∠ B=43°,∠C=61 °,点I是△ABC的内心,求∠ BIC的度数.
解:连结IB,IC.
A
B
C
I
∵点I是△ABC的内心,
∴IB,IC分别是∠ B,∠C的平分线,
在△IBC中,
例3
如图,一个木模的上部是圆柱,下部是底面为等边三角形的直三棱柱. 圆柱的下底面圆是直三棱柱上底面等边三角形的内切圆,已知直三棱柱的底面等边三角形的边长为3cm,求圆柱底面圆的半径.
该木模可以抽象为几何如下几何图形.
例4
C
A
B
r
O
D
解: 如图,设圆O切AB于点D,连接OA、OB、OD.
∵圆O是△ABC的内切圆,
∴AO、BO是∠BAC、∠ABC的角平分线
∵ △ABC是等边三角形,
∴ ∠OAB=∠OBA=30o
∵OD⊥AB,AB=3cm,
∴AD=BD= AB=1.5(cm)
∴OD=AD· tan30o= (cm)
答:圆柱底面圆的半径为 cm.
△ABC的内切圆☉O与BC、CA、AB分别相切于点D、E、F,且AB=13cm,BC=14cm,CA=9cm,求AF、BD、CE的长.
想一想:图中你能找出哪些相等的线段?理由是什么?
B
A
C
E
D
F
O
例5
解:
设AF=xcm,则AE=xcm.
∴CE=CD=AC-AE=9-x(cm),
BF=BD=AB-AF=13-x(cm).
由 BD+CD=BC,可得
(13-x)+(9-x)=14,
∴ AF=4(cm),BD=9(cm),CE=5(cm).
方法小结:关键是熟练运用切线长定理,将相等线段转化集中到某条边上,从而建立方程.
解得 x=4.
A
C
E
D
F
O
名称 确定方法 图形 性质
外心:三角形外接圆的圆心
内心:三角形内切圆的圆心
三角形三边
中垂线的交
点
1.OA=OB=OC
2.外心不一定在三角形的内部.
三角形三条
角平分线的
交点
1.到三边的距离相等;
2.OA、OB、OC分别平分∠BAC、∠ABC、∠ACB
3.内心在三角形内部.
A
B
O
A
B
C
O
比一比
C
A
B
O
D
1.求边长为6 cm的等边三角形的内切圆半径与外接圆半径.
解:如图,由题意可知BC=6cm,
∠ABC=60°,OD⊥BC,OB平分∠ABC.
∴∠OBD=30°,BD=3cm,△OBD为直角三角形.
内切圆半径
外接圆半径
变式:
求边长为a的等边三角形的内切圆半径r与外接圆半径R的比.
sin∠OBD = sin30°=
C
A
B
R
r
O
D
A
B
C
O
D
E
F
A
B
C
D
E
F
O
2.设△ABC的面积为S,周长为L, △ABC内切圆
的半径为r,则S,L与r之间存在怎样的数量关系?
A
B
C
O
c
D
E
r
3.如图,直角三角形的两直角边分别是a、b,斜边 为c,
则其内切圆的半径r为___________(以含a、 b、c的
代数式表示r).
解析:过点O分别作AC,BC,
AB的垂线,垂足分别为D,E,F.
F
则AD=AC-DC=b-r,
BF=BC-CE=a-r,
因为AF=AD,BF=BE,
AF+BF=c,
所以a-r+b-r=c,
所以
A
2.如图,已知点O是△ABC 的内心,且∠ABC= 60 °, ∠ACB= 80 °,则∠BOC= .
1.如图,PA、PB是☉O的两条切线,切点分别是A、B,如果AP=4, ∠APB= 40 ° ,则∠APO= ,PB= .
B
P
O
A
第1题
B
C
O
第2题
20 °
4
110 °
(3)若∠BIC=100 °,则∠A = 度.
(2)若∠A=80 °,则∠BIC = 度.
130
20
3.如图,在△ABC中,点I是内心,
(1)若∠ABC=50°, ∠ACB=70°,∠BIC=_____.
A
B
C
I
(4)试探索: ∠A与∠BIC之间存在怎样的数量关系?
120°
4.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E,与AC相切于点D.求证:DE∥OC.
方法一:
证明:连结OD,
∵AC切⊙O点D,∴OD⊥AC,
∴∠ODC=∠B=90°.
在Rt△OCD和Rt△OCB中,
OD=OB ,OC=OC
∴Rt△ODC≌Rt△OBC(HL),
∴∠DOC=∠BOC.
∵OD=OE,∴∠ODE=∠OED,
∵∠DOB=∠ODE+∠OED,
∴∠BOC=∠OED,∴DE∥OC.
方法二:
证明:连结BD,
∵AC切⊙O于点D,AC切⊙O于点B,∴DC=BC,OC平分∠DCB.
∴OC⊥BD.
∵BE为⊙O的直径,∴DE⊥BD.
∴DE∥OC.
5.如图,△ABC中,I是内心,∠A的平分线和△ABC的外接圆相交于点D.
求证:DI=DB.
证明:连结BI.
∵I是△ABC的内心,
∴∠BAD=∠CAD,∠ABI=∠CBI,
∵∠CBD=∠CAD,
∴∠BAD=∠CBD,
∵∠BID=∠BAD+∠ABI,∠IBD=∠CBI+∠CBD,
∴∠BID=∠IBD,
∴BD=ID.
切线长
切线长定理
作用
图形的轴对称性
原理
提供了证线段和
角相等的新方法
辅助线
分别连接圆心和切点;
连接两切点;
连接圆心和圆外一点.
三角形内切圆
运用切线长定理,将相等线段转化集中到某条边上,从而建立方程.
有关概念
内心概念及性质
应用(共37张PPT)
HS九(下)
教学课件
27.2 与圆有关的位置关系
1.点和圆的位置关系
第27章 圆
1.理解并掌握点和圆的三种位置关系.(重点)
2.理解不在同一直线上的三个点确定一个圆及其运用.
(重点)
3.了解三角形的外接圆和三角形外心的概念.
学习目标
你玩过飞镖吗?它的靶子是由一些圆组成的,你知道击中靶子上不同位置的成绩是如何计算的吗?
想一想
问题1:观察下图中点和圆的位置关系有哪几种?
.
o
.
C
.
.
.
. B
.
.A
.
点与圆的位置关系有三种:
点在圆内,点在圆上,点在圆外.
点和圆的位置关系
1
问题2:设点到圆心的距离为d,圆的半径为r,量一量在点和圆三种不同位置关系时,d与r有怎样的数量关系?
点P在⊙O内
点P在⊙O上
点P在⊙O外
d
d
d
r
P
d
P
r
d
P
r
d
<
r
r
=
>
r
反过来,由d与r的数量关系,怎样判定点与圆的位置关系呢?
1.⊙O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在 ;点B在 ;点C在 .
圆内
圆上
圆外
2.圆心为O的两个同心圆,半径分别为1和2,若OP = ,则点P在 ( )
A.大圆内 B.小圆内
C.小圆外 D.大圆内,小圆外
o
D
点和圆的位置关系
r
P
d
P
r
d
P
r
d
R
r
P
点P在⊙O内
d点P在⊙O上
d=r
点P在⊙O外
d>r
点P在圆环内
r≤d≤R
数形结合:
位置关系
数量关系
如图,已知矩形ABCD的边AB=3,AD=4.
(1)以A为圆心,4为半径作⊙A,则点B、C、D与
⊙A的位置关系如何?
解:AD=4=r,故D点在⊙A上
AB=3AC=5>r,故C点在⊙A外
例1
(2)若以A点为圆心作⊙A,使B、C、D三点中至少
有一点在圆内,且至少有一点在圆外,求⊙A的
半径r的取值范围?(直接写出答案)
3变式:如图,在直角坐标系中,点A的坐标为(2,1),P是x轴上一点,要使△PAO为等腰三角形,满足条件的P有几个?求出点P的坐标.
分类讨论思想
问题1如何过一个点A作一个圆?过点A可以作多少个圆?
·
·
·
·
·
以不与A点重合的任意一点为圆心,以这个点到A点的距离为半径画圆即可;
可作无数个圆.
A
过不共线三点作圆
2
问题2如何过两点A、B作一个圆?过两点可以作多少
个圆?
·
·
·
·
A
B
作线段AB的垂直平分线,以其上任意一点为圆心,以这点和点A或B的距离为半径画圆即可;
可作无数个圆.
问题3:过不在同一直线上的三点能不能确定一个圆?
A
B
C
D
E
G
F
●o
经过B,C两点的圆的圆心在线段BC的垂直平分线上.
经过A,B,C三点的圆的圆心应该在这两条垂直平分线的交点O的位置.
经过A,B两点的圆的圆心在线段AB的垂直平分线上.
有且只有
位置关系
定理:
不在同一直线上的三个点确定一个圆.
A
B
C
D
E
G
F
●o
归纳总结
已知:不在同一直线上的三点A、B、C.
求作:⊙O,使它经过点A、B、C.
作法:1、连结AB,作线段AB的垂直平分线MN;
2、连接AC,作线段AC的垂直平分线EF,交MN于点O;
3、以O为圆心,OB为半径作圆。
所以⊙O就是所求作的圆.
O
N
M
F
E
A
B
C
问题4:现在你知道怎样将一个如图所示的破损的圆盘复原了吗?
方法:
1、在圆弧上任取三点A、B、C;
2、作线段AB、BC的垂直平分线,其交点O即为圆心;
3、以点O为圆心,OC长为半径作圆.
⊙O即为所求.
A
B
C
O
某一个城市在一块空地新建了三个居民小区,它们分别为A、B、C,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等。请问同学们这所中学建在哪个位置?你怎么确定这个位置呢?
●
●
●
B
A
C
试一试:已知△ABC,用直尺与圆规作出过A、B、C三点的圆.
A
B
C
O
三角形的外接圆及外心
3
1. 外接圆
⊙O叫做△ABC的________,
△ABC叫做⊙O的____________.
到三角形三个顶点的距离相等.
2.三角形的外心:
定义:
●O
A
B
C
外接圆
内接三角形
三角形外接圆的圆心叫做三角形的外心.
作图:
三角形三边中垂线的交点.
性质:
判一判:
下列说法是否正确
(1)任意的一个三角形一定有一个外接圆 ( )
(2)任意一个圆有且只有一个内接三角形 ( )
(3)经过三点一定可以确定一个圆 ( )
(4)三角形的外心到三角形各顶点的距离相等 ( )
√
×
×
√
画一画:分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.
锐角三角形的外心位于三角形内,
直角三角形的外心位于直角三角形斜边的中点,
钝角三角形的外心位于三角形外.
A
B
C
●O
A
B
C
C
A
B
┐
●O
●O
经过三角形的三个顶点的圆叫做三角形的外接圆;外接圆的圆心叫三角形的外心;三角形的外心到三角形的三个顶点的距离相等.
要点归纳
如图,将△AOB置于平面直角坐标系中,O为原点,∠ABO=60°,若△AOB的外接圆与y轴交于点D(0,3).
(1)求∠DAO的度数;
(2)求点A的坐标和△AOB外接圆的面积.
解:(1)∵∠ADO=∠ABO=60°,
∠DOA=90°,
∴∠DAO=30°.
例2
(2)求点A的坐标和△AOB外接圆的面积.
解:∵点D的坐标是(0,3),∴OD=3.
在直角△AOD中,
OA=OD·tan∠ADO= ,
AD=2OD=6,
∴点A的坐标是( ,0).
∵∠AOD=90°,∴AD是圆的直径,
∴△AOB外接圆的面积是9π.
方法总结:图形中求三角形外接圆的面积时,关键是确定外接圆的直径(或半径)长度.
如图,在△ABC中,O是它的外心,BC=24cm,O到BC的距离是5cm,求△ABC的外接圆的半径.
D
解析:由外心的定义可知外接圆的半径等于OB,过点O作OD⊥BC,易得BD=12cm.由此可求它的外接圆的半径.
例2
解:连结OB,过点O作OD⊥BC.
则OD=5cm,
在Rt△OBD中
即△ABC的外接圆的半径为13cm.
1.如图,请找出图中圆的圆心,并写出你找圆心的方法
A
B
C
O
2.正方形ABCD的边长为2cm,以A为圆心2cm为半径作
⊙A,则点B在⊙A ;点C在⊙A ;点D在⊙A .
上
外
上
3.⊙O的半径r为5㎝,O为原点,点P的坐标为(3,4),则点P与⊙O的位置关系为 ( )
A.在⊙O内 B.在⊙O上
C.在⊙O外 D.在⊙O上或⊙O外
B
4.判断:
(1)经过三点一定可以作圆 ( )
(2)三角形的外心就是这个三角形两边垂直平分线的
交点 ( )
(3)三角形的外心到三边的距离相等 ( )
(4)等腰三角形的外心一定在这个三角形内 ( )
√
×
×
×
5.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则
它的外接圆半径= .
5
6.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C
的度数是________.
70°
7.如图,在5×5正方形网格中,一条圆弧经过A,B,C
三点,那么这条圆弧所在圆的圆心是 ( )
M
R
Q
A
B
C
P
A.点P B.点Q
C.点R D.点M
B
8.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )
A.第①块 B.第④块
C.第③块 D.第②块
D
1
·
2cm
3cm
9.画出由所有到已知点的距离大于或等于2cm并且小于 或等于3cm的点组成的图形.
O
10.如图,已知 Rt△ABC 中 ,
若 AC=12cm,BC=5cm,求的外接圆半径.
C
B
A
O
解:设Rt△ABC 的外接圆的外心为
O,连结OC,则OA=OB=OC.
∴O是斜边AB 的中点.
∵∠C=900,AC=12cm,
BC=5cm.
∴AB=13cm,OA=6.5cm.
故Rt△ABC 的外接圆半径为6.5cm.
一个8×12米的长方形草地,现要安装自动喷水装置,这种装置喷水的半径为5米,你准备安装几个 怎样安装 请说明理由.
点与圆的位置关系
点在圆外
点在圆上
点在圆内
d>r
d=r
d位置关系数量化
作圆
过一点可以作无数个圆
过两点可以作无数个圆
定理:
过不在同一直线上的三个点确定一个圆
一个三角形的外接圆是唯一的.
注意:同一直线上的三个点不能作圆
点P在圆环内
r≤d≤R
R
r
P(共27张PPT)
HS九(下)
教学课件
27.2 与圆有关的位置关系
2.直线和圆的位置关系
第27章 圆
学习目标
1.理解直线与圆有相交、相切、相离三种位置关系.
2.能根据圆心到直线的距离d和圆的半径r之间的数量
关系,判断出直线与圆的位置关系.(重点)
点和圆的位置关系有几种?
dd=r
d>r
用数量关系如何来
判断呢?
⑴点在圆内
·
P
⑵点在圆上
·
P
⑶点在圆外
·
P
(令OP=d )
新课引入
新课引入
视频展示
问题1 如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线和圆的公共点个数想象一下,直线和圆有几种位置关系吗?
用定义判断直线与圆的位置关系
新课讲解
1
问题2 请同学在纸上画一条直线l,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?
●
●
●
l
0
2
新课讲解
直线与圆的 位置关系
图形
公共点个数
公共点名称
直线名称
2个
交点
1个
切点
切线
0个
相离
相切
相交
位置关系
公共点个数
填一填:
新课讲解
直线和圆有唯一的公共点(即直线和圆相切)时,这条直线叫做圆的切线(如图直线l),这个唯一的公共点叫做切点(如图点A).
A
l
O
新课讲解
1.直线与圆最多有两个公共点.
2.若直线与圆相交,则直线上的点都在圆上.
3.若A是⊙O上一点,则直线AB与⊙O相切.
4.若C为⊙O外一点,则过点C的直线与⊙O相交或相离.
5.直线a 和⊙O有公共点,则直线a与⊙O相交.
判一判:
√
×
×
×
×
新课讲解
问题1 同学们用直尺在圆上移动的过程中,除了发现公共点的个数发生了变化外,还发现有什么量也在改变?它与圆的半径有什么样的数量关系呢?
相关知识:
点到直线的距离是指从直线外一点(A)到直线(l)的垂线段(OA)的长度.
l
A
O
用数量关系判断直线与圆的位置关系
新课讲解
2
问题2 怎样用d(圆心与直线的距离)来判别直线与圆的位置关系呢?
O
d
新课讲解
合作探究
直线和圆相交
d< r
直线和圆相切
d= r
直线和圆相离
d> r
r
d
∟
r
d
∟
r
d
数形结合:
位置关系
数量关系
(用圆心O到直线的距离d与圆的半径r的关系来区分)
o
o
o
公共点个数
新课讲解
要点归纳
1.已知圆的半径为6cm,设直线和圆心的距离为d :
(3)若d=8cm ,则直线与圆______, 直线与圆有____
个公共点.
(2)若d=6cm ,则直线与圆______, 直线与圆有____
个公共点.
(1)若d=4cm ,则直线与圆 , 直线与圆有____
个公共点.
相交
相切
相离
2
1
0
随堂即练
(3)若AB和⊙O相交,则 .
2.已知⊙O的半径为5cm, 圆心O与直线AB的距离为d,
根据条件填写d的范围:
(1)若AB和⊙O相离, 则 ;
(2)若AB和⊙O相切, 则 ;
d > 5cm
d = 5cm
0cm≤d < 5cm
随堂即练
B
C
A
4
3
在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?
(1) r=2cm;(2) r=2.4cm; (3) r=3cm.
分析:要了解AB与⊙C的位置关系,只要知道圆心C到AB的距离d与r的关系.已知r,只需求出C到AB的距离d.
D
新课讲解
例1
解:(1)过C作CD⊥AB,垂足为D.
在△ABC中,
AB=
5.
根据三角形的面积公式有
∴
即圆心C到AB的距离d=2.4cm.
所以 (1)当r=2cm时,
有d >r,
因此⊙C和AB相离.
B
C
A
4
3
D
d
记住:斜边上的高等于两直角边的乘积除以斜边.
新课讲解
(2)当r=2.4cm时,有d=r.
因此⊙C和AB相切.
B
C
A
4
3
D
d
(3)当r=3cm时,有d因此,⊙C和AB相交.
B
C
A
4
3
D
d
新课讲解
B
C
A
D
4
5
3
变式题:
1.Rt△ABC,∠C=90°AC=3cm,BC=4cm,以C为圆心画圆,当半径r为何值时,圆C与直线AB没有公共点?
解:当0cm<r<2.4cm或r>4cm时,
⊙C与线段AB没有公共点.
新课讲解
2.Rt△ABC,∠C=90,AC=3cm,BC=4cm,以C为圆心画圆,当半径r为何值时,圆C与线段AB有一个公共点?当半径r为何值时,圆C与线段AB有两个公共点?
B
C
A
D
4
5
3
当r=2.4cm或3cm≤r<4cm时,⊙C与线段AB有一个公共点.
当2.4cm<r≤3cm 时,⊙C与线段AB有两公共点.
新课讲解
如图,Rt△ABC的斜边AB=10cm,∠A=30°.
(1) 以点C为圆心,当半径为多少时,AB与☉C相切?
(2) 以点C为圆心,半径r分别为4cm,5cm作两个圆,这两个圆与斜边AB分别有怎样的位置关系?
A
C
B
新课讲解
例2
A
C
B
解:(1) 过点C作边AB上的高CD.
D
∵∠A=30°,AB=10cm,
在Rt△BCD中,有
当半径为 时,AB与☉C相切.
新课讲解
.O
.O
.O
.O
.O
1.看图判断直线l与☉O的位置关系?
(1)
(2)
(3)
(4)
(5)
相离
相交
相切
相交
注意:直线是可以无限延伸的.
相交
随堂即练
2.直线和圆相交,圆的半径为r,且圆心到直线的
距离为5,则有 ( )
A. r < 5 B. r > 5 C. r = 5 D. r ≥ 5
3. ☉O的半径为5,直线l上的一点到圆心O的距离是
5,则直线l与☉O的位置关系是 ( )
A. 相交或相切 B. 相交或相离
C. 相切或相离 D. 上三种情况都有可能
B
相离
A
随堂即练
4. ☉O的最大弦长为8,若圆心O到直线l的距离为
d=5,则直线l与☉O .
解析:过点A作AQ⊥MN于Q,连接AN,设半径为r,由垂径定理有MQ=NQ,所以AQ=2,AN=r,NQ=4-r,利用勾股定理可以求出NQ=1.5,所以N点坐标为(-1,-2).故选A.
5.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点.若点M的坐标是(-4,-2),则点N的坐标为 ( )
A.(-1,-2) B.(1,2)
C.(-1.5,-2) D.(1.5,-2)
A
随堂即练
已知☉O的半径r=7cm,直线l1 // l2,且l1与☉O相切,圆心O到l2的距离为9cm.求l1与l2的距离.
o
l1
l2
A
B
C
l2
解:(1) l2与l1在圆的同一侧:
m=9-7=2 cm
(2)l2与l1在圆的两侧:
m=9+7=16 cm
能力提升
直线与圆的位置关系
定义
性质
判定
相离
相切
相交
公共点的个数
d与r的数量关系
定义法
性质法
特别提醒:在图中没有d要先做出该垂线段
相离:0个
相切:1个
相交:2个
相离:d>r
相切:d=r
相交:d0个:相离;1个:相切;2个:相交
d>r:相离
d=r:相切
d课堂小结(共33张PPT)
HS九(下)
教学课件
27.2 与圆有关的位置关系
第1课时 切线的性质与判定
3. 切线
学习目标
1. 会判定一条直线是否是圆的切线并会过圆上一点作
圆的切线.
2. 理解并掌握圆的切线的判定定理及性质定理.(重点)
3. 能运用圆的切线的判定定理和性质定理解决问题.
(难点)
新课引入
转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?
都是沿切线方向飞出的.
生活中常看到切线的实例,如何判断一条直线是否为切线呢?学完这节课,你就都会明白.
新课引入
O
A
B
C
问题:已知圆O上一点A,怎样根据圆的切线定义过点A作圆O的切线?
观察:(1) 圆心O到直线AB的距离和圆的半径有什么数量关系
(2)二者位置有什么关系?为什么?
切线的判定定理
O
新课讲解
1
经过半径的外端且垂直于这条半径的直线是圆的切线.
OA为⊙O的半径
BC ⊥ OA于A
BC为⊙O的切线
O
A
B
C
切线的判定定理
应用格式
O
新课讲解
判一判:下列各直线是不是圆的切线?如果不是,请说明为什么?
O.
A
O.
A
B
A
O
(1)
(2)
(3)
(1)不是,因为没有垂直.
(2),(3)不是,因为没有经过半径的外端点A.
注意:在此定理中,“经过半径的外端”和“垂直于这条半径”,两个条件缺一不可,否则就不是圆的切线.
新课讲解
判断一条直线是一个圆的切线有三个方法:
1.定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;
l
新课讲解
要点归纳
3.判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.
A
l
O
2.数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;
l
r
d
新课讲解
如图,∠ABC=45°,直线AB是☉O上的直径,点A,且AB=AC.
求证:AC是☉O的切线.
解析:直线AC经过半径的一端,因此只要证OA垂直于
AB即可.
证明:∵AB=AC,∠ABC=45°,
∴∠ACB=∠ABC=45°.
∴∠BAC=180°-∠ABC-ACB=90°.
∵AB是☉O的直径,
∴ AC是☉O的切线.
A
O
C
B
新课讲解
例1
已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.
O
B
A
C
分析:由于AB过⊙O上的点C,所以连结OC,只要证明AB⊥OC即可.
证明:连结OC(如图).
∵ OA=OB,CA=CB,
∴ OC是等腰三角形OAB底边AB上的中线.
∴ AB⊥OC.
∵ OC是⊙O的半径,
∴ AB是⊙O的切线.
新课讲解
例2
如图,△ABC 中,AB =AC ,O 是BC的中点,⊙O 与AB 相切于E.求证:AC 是⊙O 的切线.
B
O
C
E
A
分析:根据切线的判定定理,要证明AC是⊙O的切线,只要证明由点O向AC所作的垂线段OF是⊙O的半径就可以了,而OE是⊙O的半径,因此只需要证明OF=OE.
F
新课讲解
例3
证明:连结OE ,OA, 过O 作OF ⊥AC.
∵⊙O 与AB 相切于E , ∴OE ⊥ AB.
又∵△ABC 中,AB =AC ,O 是BC 的中点.
∴AO 平分∠BAC,
F
B
O
C
E
A
∴OE =OF.
∵OE 是⊙O 半径,OF =OE,OF ⊥ AC.
∴AC 是⊙O 的切线.
又OE ⊥AB ,OF⊥AC.
新课讲解
如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB
求证:直线AB是⊙O的切线.
C
B
A
O
如图,OA=OB=5,AB=8, ⊙O的直径为6.
求证:直线AB是⊙O的切线.
C
B
A
O
对比思考
?
作垂直
连接
新课讲解
(1) 有交点,连半径,证垂直;
(2) 无交点,作垂直,证半径.
证切线时辅助线的添加方法
例1
例2
有切线时常用辅助线添加方法
(1) 见切点,连半径,得垂直.
切线的其他重要结论
(1)经过圆心且垂直于切线的直线必经过切点;
(2)经过切点且垂直于切线的直线必经过圆心.
新课讲解
思考:如图,如果直线l是⊙O 的切线,点A为切点,那么OA与l垂直吗?
A
l
O
∵直线l是⊙O 的切线,A是切点,
∴直线l ⊥OA.
切线的性质定理
切线性质
圆的切线垂直于经过切点的半径.
应用格式
新课讲解
2
小亮的理由是:直径AB与直线CD要么垂直,要么不垂直.
(1)假设AB与CD不垂直,过点O作一条直径垂直于CD,垂足为M,
(2)则OMC
D
B
O
A
(3)所以AB与CD垂直.
M
证法1:反证法.
性质定理的证明
新课讲解
新课讲解
反证法的证明视频
C
D
O
A
证法2:构造法.
作出小⊙O的同心圆大⊙O,CD切小⊙O于点A,且A点为CD的中点,连结OA,根据垂径定理,则CD ⊥OA,即圆的切线垂直于经过切点的半径.
新课讲解
1.如图:在⊙O中,OA、OB为半径,直线MN与⊙O相切于点B,若∠ABN=30°,则∠AOB= .
2.如图AB为⊙O的直径,D为AB延长线上一点,DC与⊙O相切于点C,∠DAC=30°, 若⊙O的半径长1cm,则CD= cm.
60°
随堂即练
方法总结:利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.
新课讲解
如图,PA为⊙O的切线,A为切点.直线PO与⊙O交于B、C两点,∠P=30°,连结AO、AB、AC.
(1)求证:△ACB≌△APO;
(2)若AP= ,求⊙O的半径.
解析:(1)根据已知条件我们易得∠CAB=∠PAO=90°,由∠P=30°可得出∠AOP=60°,则∠C=30°=∠P,即AC=
AP;这样就凑齐了角边角,可证得△ACB≌△APO;
O
A
B
P
C
(2)由已知条件可得△AOP为直角三角形,因此可以通过解直角三角形求出半径OA的长.
新课讲解
例4
(1)求证:△ACB≌△APO;
O
A
B
P
C
在△ACB和△APO中,∠BAC=∠OAP,AB=AO,∠ABO=∠AOB,
∴△ACB≌△APO.
证明:∵PA为⊙O的切线,A为切点,
又∵∠P=30°,∴∠AOB=60°,
又OA=OB,∴△AOB为等边三角形.
∴AB=AO,∠ABO=60°.
又∵BC为⊙O的直径,∴∠BAC=90°.
∴∠OAP=90°.
新课讲解
(2)若AP= ,求⊙O的半径.
O
A
B
P
C
∴AO=1,
∴CB=OP=2,
∴OB=1,即⊙O的半径为1.
解:在Rt△AOP中,∠P=30°,AP= ,
新课讲解
1.判断下列命题是否正确.
⑴ 经过半径外端的直线是圆的切线. ( )
⑵ 垂直于半径的直线是圆的切线. ( )
⑶ 过直径的外端并且垂直于这条直径的直线是圆
的切线. ( )
⑷ 和圆只有一个公共点的直线是圆的切线. ( )
⑸ 过直径一端点且垂直于直径的直线是圆的切线.
( )
×
×
√
√
√
随堂即练
2.如图所示,A是☉O上一点,且AO=5,PO=13,AP=12,则PA与☉O的位置关系是 .
A
P
O
第2题
相切
随堂即练
3.如图,在☉O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为 ( )
A.40° B.35° C.30° D.45°
随堂即练
P
O
第3题
D
A
B
C
C
4.如图, ⊙O切PB于点B,PB=4,PA=2,则⊙O的半径多少?
O
P
B
A
解:连结OB,则∠OBP=90°.
设⊙O的半径为r,则OA=OB=r,
OP=OA+PA=2+r.
在Rt△OBP中,
OB2+PB2=PO2,即r2+42=(2+r)2.
解得 r=3,
即⊙O的半径为3.
随堂即练
证明:连结OP.
∵AB=AC,∴∠B=∠C.
∵OB=OP,∴∠B=∠OPB,
∴∠OBP=∠C.
∴OP∥AC.
∵PE⊥AC,
∴PE⊥OP.
∴PE为⊙O的切线.
5.如图,△ABC中,AB=AC,以AB为直径的⊙O交
边BC于P, PE⊥AC于E.
求证:PE是⊙O的切线.
O
A
B
C
E
P
随堂即练
6.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.
证明:连结OM,过点O作
ON⊥CD于点N,
∵⊙O与BC相切于点M,
∴OM⊥BC.
又∵ON⊥CD,O为正
方形ABCD对角线AC上一点,
∴OM=ON,
∴CD与⊙O相切.
M
N
随堂即练
7.已知:△ABC内接于☉O,过点A作直线EF.
(1)如图1,AB为直径,要使EF为☉O的切线,还需添加的条件是(只需写出两种情况):
① _________ ;② _____________ .
(2)如图2,AB是非直径的弦,∠CAE=∠B,求证:EF是☉O的切线.
BA⊥EF
∠CAE=∠B
A
F
E
O
A
F
E
O
B
C
B
C
图1
图2
随堂即练
证明:连结AO并延长交☉O于D,连结CD,
则AD为☉O的直径.
∴ ∠D+ ∠DAC=90 °,
∵ ∠D与∠B同对 ,
∴ ∠D = ∠B,
又∵ ∠CAE= ∠B,
∴ ∠D= ∠CAE,
∴ ∠DAC + ∠EAC=90°,
∴EF是☉O的切线.
A
F
E
O
B
C
图2
D
随堂即练
切线的
判定方法
定义法
数量关系法
判定定理
1个公共点,则相切
d=r,则相切
经过圆的半径的外端且垂直于这条半径的直线是圆的切线.
切线的
性质
证切线时常用辅助线添加方法:
①有公共点,连半径,证垂直;
②无公共点,作垂直,证半径.
有1个公共点
d=r
性质定理
圆的切线垂直于经过切点的半径
有切线时常用辅助线
添加方法:
见切线,连切点,得垂直.
课堂小结(共49张PPT)
HS九(下)
教学课件
第27章 圆
复习课
·
一.与圆有关的概念
1.圆:平面内到定点的距离等于定长的所有点组成的图形.
2.弦:连结圆上任意两点的线段.
3.直径:经过圆心的弦是圆的直径,直径是最长的弦.
4.劣弧:小于半圆周的圆弧.
5.优弧:大于半圆周的圆弧.
6.等弧:在同圆或等圆中,能够互相重合的弧.
7.圆心角:顶点在圆心,角的两边与圆相交.
8.圆周角:顶点在圆上,角的两边与圆相交.
注意:(1)确定圆的要素:圆心决定位置,半径决定大小.(2)不在同一条直线上的三个点确定一个圆.
·
9.外接圆、内接正多边形:将一个圆n(n≥3)等分,依次连接各等分点所得到的多边形叫作这个圆的内接正多边形,这个圆是这个正多边形的外接圆.
10.三角形的外接圆
外心:三角形的外接圆的圆心叫做这个这个三角形的外心.
注意:(1)三角形的外心是三角形三条边的垂直平分线的交点.(2)一个三角形的外接圆是唯一的.
11.三角形的内切圆
内心:三角形的内切圆的圆心叫做这个这个三角形的
内心.
注意:(1)三角形的内心是三角形三条角平分线的交点.(2)一个三角形的内切圆是唯一的.
12.正多边形的相关概念
(1)中心:正多变形外接圆和内切圆有公共的圆心,称其为正多边形的中心.
(2)半径:外接圆的半径叫做正多边形的半径.
(3)边心距:中心到正多边形一边的距离叫做正多边形的边心距.
(4)中心角:正多边形每一条边对应所对的外接圆的圆心角都相等,叫做正多边形的中心角.
二、与圆有关的位置关系
1.点与圆的位置关系
判断点与圆的位置关系可由点到圆心的距离d与圆的半径r比较得到.
设☉O的半径是r,点P到圆心的距离为d,则有
点P在圆内;
d<r
点P在圆上;
d=r
点P在圆外.
d>r
注意:点与圆的位置关系可以转化为点到圆心的距离与半径之间的关系;反过来,也可以通过这种数量关系判断点与圆的位置关系.
2.直线与圆的位置关系
设r为圆的半径,d为圆心到直线的距离
直线与圆的
位置关系
图形
d与r的关系
公共点个数
公共点名称
直线名称
2个
交点
割线
1个
切点
切线
0个
相离
相切
相交
d>r
d=r
d<r
三、 圆的基本性质
1. 圆的对称性
圆是轴对称图形,它的任意一条_______所在的直线都是它的对称轴.
直径
2. 有关圆心角、弧、弦的性质.
(1)在同圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦也相等.
(2)在同圆或等圆中,如果两个圆心角、两条弧和两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
(2)垂径定理的推论:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧;
平分弧的直径垂直平分这条弧所对的弦.
四、 有关定理及其推论
1.垂径定理
(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的 .
注意:①条件中的“弦”可以是直径;②结论中的“平分弧”指平分弦所对的劣弧、优弧.
两条弧
2.圆周角定理
(1)圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.
(3)推论2:90°的圆周角所对的弦是直径.
注意:“同弧”指“在一个圆中的同一段弧”;“等弧”指“在同圆或等圆中相等的弧”;“同弧或等弧”不能改为“同弦或等弦”.
(4)推论3:圆的内接四边形的对角互补.
(2)推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对弧相等.
3.与切线相关的定理
(1)判定定理:经过圆的半径的外端且垂直于这条半径的直线是圆的切线.
(2)性质定理:圆的切线垂直于经过切点的半径.
(3)切线长定理:经过圆外一点所画的圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.
五、 圆中的计算问题
1.弧长公式
半径为R的圆中,n°圆心角所对的弧长l=________.
2.扇形面积公式
半径为R,圆心角为n°的扇形面积S= ____________.
或
3.弓形面积公式
O
O
弓形的面积=扇形的面积±三角形的面积
(3)圆锥的侧面积为 .
注意:圆锥的侧面展开图的形状是扇形,它的半径等于圆锥的母线长,它的弧长是圆锥底面圆的周长.
(4)圆锥的全面积为 .
4.圆锥的侧面积
(1)圆锥的侧面展开图是一个 .
(2)如果圆锥母线长为l,底面圆的半径为r,那么这个扇形的半径为 ,扇形的弧长为 .
扇形
l
5.圆内接正多边形的计算
(1)正n边形的中心角为
(2)正n边形的边长a,半径R,边心距r之间的关系
(3)边长a,边心距r的正n边形的面积为
其中l为正n边形的周长.
圆周角定理
例1 在图中,BC是☉O的直径,AD⊥BC,若∠D=36°,则∠BAD的度数是 ( )
A. 72° B.54° C. 45° D.36 °
A
B
C
D
B
考点1
135°
1.如图a,四边形ABCD为☉O的内接正方形,点P为劣弧BC上的任意一点(不与B,C重合),则∠BPC的度数是 .
C
D
B
A
P
O
图a
针对训练
2.如图b,线段AB是直径,点D是☉O上一点, ∠CDB=20 °,过点C作☉O的切线交AB的延长线于点E,则∠E等于 .
O
C
A
B
E
D
图b
50°
垂径定理
工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为 mm.
8mm
A
B
8
C
D
O
解析:设圆心为O,连接AO,作出过点O的弓形高CD,垂足为D,可知AO=5mm,OD=3mm,利用勾股定理进行计算,AD=4mm,所以AB=8mm.
考点2
例2
A
O
B
C
E
F
3.如图a,点C是扇形OAB上的AB的任意一点,OA=2,连结AC,BC,过点O作OE ⊥AC,OF ⊥BC,垂足分别为E,F,连结EF,则EF的长度等于 .
(
针对训练
图a
A
B
C
D
P
O
图b
D’
P
4.如图b, AB是⊙O的直径,且AB=2,C,D是同一半圆上的两点,并且AC与BD的度数分别是96 °和36 °,动点P是AB上的任意一点,则PC+PD的最小值是 .
(
(
与圆有关的位置关系
B
北
60°
30°
A
C
如图,已知灯塔A的周围7海里的范围内有暗礁,一艘鱼轮在B处测得灯塔A在北偏东600的方向,向东航行8海里到达C处后,又测得该灯塔在北偏东300的方向,如果渔轮不改变航向,继续向东航行,有没有触礁的危险?请通过计算说明理由.
(参考数据 =1.732)
例3
考点3
解析:灯塔A的周围7海里都是暗礁,即表示以A为圆心,7海里为半径的圆中,都是暗礁.渔轮是否会触礁,关键是看渔轮与圆心A之间的距离d的大小关系.
B
北
60°
30°
A
C
B
北
60°
30°
A
C
D
解:如图,作AD垂直于BC于D,根据题意,得BC=8.设AD为x.
∵∠ABC=30°,∴AB=2x.
BD= x.
∵∠ACD=90°-30°=60°,
∴ AD=CD×tan60°,CD= .
BC=BD-CD= =8.
解得 x=
即渔船继续往东行驶,有触礁的危险.
5. ☉O的半径为R,圆心到点A的距离为d,且R、d分别是方程x2-6x+8=0的两根,则点A与☉O的位置关系是 ( )
A.点A在☉O内部 B.点A在☉O上
C.点A在☉O外部 D.点A不在☉O上
解析:此题需先计算出一元二次方程x2-6x+8=0的两个根,然后再根据R与d的之间的关系判断出点A与 ☉O的关系.
D
针对训练
如图, O为正方形对角线上一点,以点O 为圆心,OA长为半径的☉O与BC相切于点M.
(1)求证:CD与☉O相切;
A
B
C
D
O
M
证明:过点O作ON⊥CD于N.连接OM
∵BC与☉O相切于点M, ∴ ∠OMC=90 °, ∵四边形ABCD是正方形,点O在AC上.
∴AC是∠BCD的角平分线,
∴ON=OM,
∴ CD与☉O相切.
N
例4
A
B
C
D
O
M
解: ∵正方形ABCD的边长为1, AC= .
设☉O的半径为r,则OC=
又易知△OMC是等腰直角三角形, ∴OC=
因此有 ,解得 .
(2)若正方形ABCD的边长为1,求☉O的半径.
(1)证切线时添加辅助线的解题方法有两种: ①有公共点,连半径,证垂直; ②无公共点,作垂直,证半径;有切线时添加辅助线的解题方法是:见切点,连半径,得垂直;
(2)设未知数,通常利用勾股定理建立方程.
方法归纳
6.(多解题)如图,直线AB,CD相交于点O,
∠AOD=30 °,半径为1cm的☉P的圆心在射线OA上,且与点O的距离为6cm,如果☉P以1cm/s的速度沿由A向B的方向移动,那么 秒钟后☉P与直线CD相切.
4或8
解析:根本题应分为两种情况:(1)☉P在直线AB下面与直线CD相切;(2)☉P在直线AB上面与直线CD相切.
A
B
D
C
P
P2
P1
E
针对训练
已知:如图,PA,PB是⊙O的切线,A、B为切点,过 上的一点C作⊙O的切线,交PA于D,交PB于E.
(1)若∠P=70°,求∠DOE的度数;
解:连结OA、OB、OC,
∵⊙O分别切PA、PB、DE于点A、B、C,∴OA⊥PA,OB⊥PB,OC⊥DE,AD=CD,BE=CE,
∴OD平分∠AOC,OE平分∠BOC.
∴∠DOE= ∠AOB.
∵∠P+∠AOB=180°,∠P=70°,
∴∠DOE=55°.
例5
解:∵⊙O分别切PA、PB、DE于A、B、C,
∴AD=CD,BE=CE.
∴△PDE的周长=PD+PE+DE
=PD+AD+BE+PE=2PA=8(cm)
(2)若PA=4 cm,求△PDE的周长.
如图,四边形OABC为菱形,点B、C在以点O为圆心的圆上, OA=1,∠AOC=120°,∠1=∠2,则扇形OEF的面积?
解:∵四边形OABC为菱形
∴OC=OA=1
∵ ∠AOC=120°,∠1=∠2
∴ ∠FOE=120°
又∵点C在以点O为圆心的圆上
圆中的计算问题
考点4
例6
7.(1)一条弧所对的圆心角为135 ° ,弧长等于半径
为5cm的圆的周长的3倍,则这条弧的半径为 .
(2)若一个正六边形的周长为24,则该正六边形的面
积为______.
40cm
针对训练
8.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于_______.
如图所示,在正方形ABCD内有一条折线段,其中AE⊥EF,EF⊥FC,已知AE=6,EF=8,FC=10,求图中阴影部分的面积.
例7
解:将线段FC平移到直线AE上,此时点F与点E重合,
点C到达点C'的位置.连接AC,如图所示.
根据平移的方法可知,四边形EFCC'是矩形.
∴ AC'=AE+EC'=AE+FC=16,CC'=EF=8.
在Rt△AC'C中,得
∴正方形ABCD外接圆的半径为
∴正方形ABCD的边长为
当图中出现圆的直径时,一般方法是作出直径所对的圆周角,从而利用“直径所对的圆周角等于 ”构造出直角三角形,为进一步利用勾股定理或锐角三角函数提供了条件.
方法总结
9. 如图,正六边形ABCDEF内接于半径为5的⊙O,四边形EFGH是正方形.
⑴求正方形EFGH的面积;
解:∵正六边形的边长与其半径相等,
∴EF=OF=5.
∵四边形EFGH是正方形,
∴FG=EF=5,
∴正方形EFGH的面积是25.
针对训练
解:∵正六边形的边长与其半径相等,
∴∠OFE=600.
∴正方形的内角是900,
∴∠OFG=∠OFE +∠EFG=600+900=1500.
由⑴得OF=FG,
∴∠OGF= (1800-∠OFG)
= (1800-1500)=150.
⑵连接OF、OG,求∠OGF的度数.
与圆有关的作图
·
a
b
c
d
a
如何解决“破镜重圆”的问题:
O
·
考点5
例8
如何作圆内接正五边形怎么作?
·
O
E
72°
B
A
D
C
(1)用量角器作72°的中心角,
得圆的五等分点;
(2)依次连接各等分点,得圆
的内接正五边形.
例9
圆的综合
解析:连结BD,则在Rt△BCD中,BE=DE,利用角的互余证明∠C=∠EDC.
如图,在Rt△ABC中,∠ABC=90°,以AB为直径的☉O交AC于点D,过点D的切线交BC于E.
(1)求证:BC=2DE.
考点6
例10
解:(1)证明:连结BD,
∵AB为直径,∠ABC=90°,
∴BE切☉O于点B.
又∵DE切☉O于点D,∴DE=BE,
∴∠EBD=∠EDB.
∵∠ADB=90°,
∴∠EBD+∠C=90°,∠BDE+∠CDE=90°.
∴∠C=∠CDE,DE=CE.
∴BC=BE+CE=2DE.
解:∵DE=2,∴BC=2DE=4.
在Rt△ABC中,
∴AB=BC =
在Rt△ABC中,
又∵△ABD∽△ACB,
∴ 即
∴
(2)若tanC= ,DE=2,求AD的长.
10. 如图,在Rt△ABC中,∠ABC=90°,以AB为直径的☉O交AC于点D,连接BD.
针对训练
解:∵AB是直径,∴∠ADB=90°.
∵AD=3,BD=4,∴AB=5.
∵∠CDB=∠ABC,∠A=∠A,
∴△ADB∽△ABC,
∵ 即 ∴BC=
(1)若AD=3,BD=4,求边BC的长.
又∵∠OBD+∠DBC=90°,∠C+∠D=90°,
∴∠C=∠OBD,∴∠BDO=∠CDE.
∵AB是直径,∴∠ADB=90°,
∴∠BDC=90°,
即∠BDE+∠CDE=90°.
∴∠BDE+∠BDO=90°,即∠ODE=90°.
∴ED与☉O相切.
证明:连结OD,在Rt△BDC中,
∵E是BC的中点,∴CE=DE,∴∠C=∠CDE.
又OD=OB,∴∠ODB=∠OBD.
(2)取BC的中点E,连接ED,试证明ED与☉O相切.
圆
圆的性质
与圆有关的位置关系
弧长与扇形面积的计算
圆的对称性
圆是中心对称图形
垂径定理
四边形的内接圆、三角形的外接圆
直线与圆的位置的关系
切线长定理
圆的概念
圆心角、圆周角、弧与弦之间的关系
圆是轴对称图形,任意一条直径所在直线都是它的对称轴
切线
三角形的内切圆
正多边形与圆
作图(共29张PPT)
HS九(下)
教学课件
27.1 圆的认识
第27章 圆
1.圆的基本元素
1.认识圆,理解圆的本质属性.(重点)
2.认识弦、弧、半圆、优弧、劣弧、同心圆、等
圆、等弧等与圆有关的概念,并了解它们之间
的区别和联系.(难点)
3.掌握同圆中半径相等的性质并能运用.(难点)
学习目标
观察下列生活中的图片,找一找你所熟悉的图形.
骑车运动
看了此画,你有何想法
思考:车轮为什么做成圆形 做成三角形、正方形可以吗?
车轮为圆形的原理分析:(下图为FLASH动画,点击)
情景:一些学生正在做投圈游戏,他们呈“一”字排开.这样的队形对每一人都公平吗?你认为他们应当排成什么样的队形?
探究圆的概念
1
甲
丙
乙
丁
为了使游戏公平,
在目标周围围成一个圆排队,
因为圆上各点到圆心的距离都等于半径.
·
r
O
A
圆的旋转定义
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.以点O为圆心的圆,记作“⊙O”,读作“圆O”.
有关概念
固定的端点O叫做圆心,线段OA叫做半径,一般用r表示.
问题 观察画圆的过程,你能说出圆是如何画出来的吗?
一是圆心,圆心确定其位置;二是半径,半径确定其大小.
同心圆
等圆
半径相同,圆心不同
圆心相同,半径不同
确定一个圆的要素
(1)圆上各点到定点(圆心O)的距离都等于_____.
(2)到定点的距离等于定长的点都在 .
圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.
O
·
A
C
E
r
r
r
r
r
D
定长r
同一个圆上
圆的集合定义
想一想:从画圆的过程可以看出什么呢?
圆的基本性质
o
同圆半径相等.
矩形ABCD的对角线AC、BD相交于O.
求证:A、B、C、D在以O为圆心的同一圆上.
A
B
C
D
O
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
又∵AC=BD,
∴OA=OB=OC=OD.
∴A、B、C、D在以O为圆心,
以OA为半径的圆上.
例1
弦:
·
C
O
A
B
连接圆上任意两点的线段(如图中的AC)叫做弦.
经过圆心的弦(如图中的AB)叫做直径.
注意:1.弦和直径都是线段.
2.直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.
圆的有关概念
2
弧:
·
C
O
A
B
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
劣弧与优弧
·
C
O
A
B
半圆
小于半圆的弧叫做劣弧.如图中的AC ;
(
大于半圆的弧叫做优弧.如图中的ABC.
(
等圆:
·
C
O
A
能够重合的两个圆叫做等圆.
·
C
O1
A
容易看出:
等圆是两个半径相等的圆.
等弧:
在同圆或等圆中,能够互相重合的弧叫做等弧.
想一想:长度相等的弧是等弧吗?
A
B
C
D
观察AD和BC是否相等?
⌒
⌒
O
如图.
(1)请写出以点A为端点的优弧及劣弧;
(2)请写出以点A为端点的弦及直径.
弦AF,AB,AC.其中弦AB又是直径.
(3)请任选一条弦,写出这条弦所对的弧.
答案不唯一,如:弦AF,它所对的弧是 .
A
B
C
E
F
D
O
劣弧:
优弧:
AF,
(
AD,
(
AC,
(
AE.
(
AFE,
(
AFC,
(
ADE,
(
ADC.
(
AF
(
例2
1.根据圆的定义,“圆”指的是“圆周”,而不是“圆面”.
2.直径是圆中最长的弦.
附图解释:
·
C
O
A
B
连接OC,
在△AOC中,根据三角形三边关系有AO+OC>AC,
而AB=2OA,AO=OC,所以AB>AC.
如图,MN是半圆O的直径,正方形ABCD的顶点A、D在半圆上,顶点B、C在直径MN上,求证:OB=OC.
连OA,OD即可,
同圆的半径相等.
Ⅰ
Ⅱ
10
?
x
2x
在Rt△ABO中,
算一算:设在例3中,⊙O的半径为10,则正方形ABCD的边长为 .
例3
x
x
x
x
变式:如图,在扇形MON中, ,半径MO=NO=10,,正方形ABCD的顶点B、C、D在半径上,顶点A在圆弧上,求正方形ABCD的边长.
解:连结OA.
∵ABCD为正方形
∴DC=CO
设OC=x,则AB=BC=DC=OC=x
又∵OA=OM=10
∴在Rt△ABO中,
∠ADC=∠DCB=90°
又∵∠DOC=45°
O
A
B
M
1.圆心角:顶点在圆心,角的两边与圆相交的角叫圆心
角,如∠AOB .
3.圆心角 ∠AOB所对的弦为AB.
2.圆心角 ∠AOB 所对的弧为 AB.
⌒
圆心角
3
判别下列各图中的角是不是圆心角,并说明理由.
圆内角
圆外角
圆周角(后面会学到)
圆心角
1.填空:
(1)______是圆中最长的弦,它是______的2倍.
(2)图中有 条直径, 条非直径的弦,
圆中以A为一个端点的优弧有 条,
劣弧有 条.
直径
半径
一
二
四
四
A
B
C
D
O
F
E
2.判断下列说法的正误,并说明理由或举反例.
(1)弦是直径;
(2)半圆是弧;
(3)过圆心的线段是直径;
(4)过圆心的直线是直径;
(5)半圆是最长的弧;
(6)直径是最长的弦;
(7)长度相等的弧是等弧.
×
√
×
×
×
√
×
3. 一根5m长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域.
5m
5m
O
4m
5m
O
4m
参考答案:
圆
定义
旋转定义
要画一个确定的圆,关键是
确定圆心和半径
集合定义
同圆半径相等
有关
概念
弦(直径)
直径是圆中最长的弦
弧
半圆是特殊的弧
劣弧
半圆
优弧
同心圆
等圆
同圆
等弧
能够互相重合的两段弧
圆心角
顶点在圆心,并且两边都和圆周相交的角 (共27张PPT)
HS九(下)
教学课件
27.2 圆的对称性
2.圆的对称性
第2课时 垂径定理
1.进一步认识圆,了解圆是轴对称图形.
2.理解垂直于弦的直径的性质和推论,并能应用
它解决一些简单的计算、证明和作图问题.(重点)
3.灵活运用垂径定理解决有关圆的问题.(难点)
学习目标
问题:你知道赵州桥吗 它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m, 拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?
问题:如图,AB是⊙O的一条弦, 直径CD⊥AB, 垂足为E.你能发现图中有那些相等的线段和劣弧 为什么
线段: AE=BE
弧: AC=BC, AD=BD
⌒
⌒
⌒
⌒
理由如下:
把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B重合,AE与BE重合,AC和BC,AD与BD重合.
⌒
⌒
⌒
⌒
·
O
A
B
D
E
C
垂径定理及其推论
1
垂径定理
·
O
A
B
C
D
E
垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.
∵ CD是直径,CD⊥AB,
∴ AE=BE,
⌒
⌒
AC =BC,
⌒
⌒
AD =BD.
推导格式:
提示:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.
想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?
是
不是,因为没有垂直
是
不是,因为CD没有过圆心
A
B
O
C
D
E
O
A
B
C
A
B
O
E
A
B
D
C
O
E
垂径定理的几个基本图形:
A
B
O
C
D
E
A
B
O
E
D
A
B
O
D
C
A
B
O
C
如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?
①过圆心 ;②垂直于弦; ③平分弦;
④平分弦所对的优弧 ; ⑤平分弦所对的劣弧.
上述五个条件中的任何两个条件都可以推出其他三个结论吗?
思考探索
D
O
A
B
E
C
举例证明其中一种组合方法
已知:
求证:
① CD是直径
② CD⊥AB,垂足为E
③ AE=BE
④ AC=BC ⑤ AD=BD
⌒
⌒
⌒
⌒
证明猜想
如图,AB是⊙O的一条弦,作直径CD,使AE=BE.
(1)CD⊥AB吗?为什么?
(2)
·
O
A
B
C
D
E
⌒
AC与BC相等吗? AD与BD相等吗?为什么?
⌒
(2)由垂径定理可得AC =BC, AD =BD.
⌒
⌒
⌒
⌒
(1)连结AO,BO,则AO=BO,
又AE=BE,
∴△AOE≌△BOE(SSS),
∴∠AEO =∠BEO =90°,
∴CD⊥AB.
⌒
⌒
证明举例
思考:“不是直径”这个条件能去掉吗?如果不能,请举出反例.
平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧;
平分弧的直径垂直平分这条弧所对的弦.
垂径定理的推论
·
O
A
B
C
D
特别说明:
圆的两条直径是互相平分的.
如图,OE⊥AB于E,若⊙O的半径为10cm,
OE=6cm,则AB= cm.
·
O
A
B
E
解:连结OA,∵ OE⊥AB,
∴ AB=2AE=16cm.
垂径定理及其推论的计算
∴
cm.
2
例1
如图,⊙ O的弦AB=8cm ,直径CE⊥AB于D,DC=2cm,求半径OC的长.
·
O
A
B
E
C
D
解:连结OA,∵ CE⊥AB于D,
设OC=xcm,则OD=x-2,根据勾股定理,得
解得 x=5,
即半径OC的长为5cm.
x2=42+(x-2)2,
例2
AD= AB= ×8=4(cm)
已知:⊙O中弦AB∥CD,
求证:AC=BD.
⌒
⌒
.
M
C
D
A
B
O
N
证明:作直径MN⊥AB.
∵AB∥CD,∴MN⊥CD.
则AM=BM,CM=DM
(垂直平分弦的直径平分弦所对的弧)
AM-CM=BM-DM
∴AC=BD
⌒
⌒
⌒
⌒
⌒
⌒
⌒
⌒
⌒
⌒
例3
解决有关弦的问题,经常是过圆心作弦的弦心距,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.
归纳总结
试一试:根据刚刚所学,你能利用垂径定理求出引入中赵州桥主桥拱半径的问题吗
垂径定理的实际应用
3
A
B
O
C
D
解:如图,用AB表示主桥拱,设AB
所在圆的圆心为O,半径为R.
经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C是弧AB的中点,CD就是拱高.
∴ AB=37m,CD=7.23m.
解得R≈27.3(m).
即主桥拱半径约为27.3m.
=18.52+(R-7.23)2
∴ AD= AB=18.5m,OD=OC-CD=R-7.23.
练一练:如图a、b,一弓形弦长为 cm,弓形所在的圆的半径为7cm,则弓形的高为________.
C
D
C
B
O
A
D
O
A
B
图a
图b
2cm或12cm
在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.
涉及垂径定理时辅助线的添加方法
弦a,弦心距d,弓形高h,半径r之间有以下关系:
弓形中重要数量关系
A
B
C
D
O
h
r
d
d+h=r
O
A
B
C
·
1.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,
则此圆的半径为 .
5cm
2.⊙O的直径AB=20cm, ∠BAC=30°则弦
AC= .
10 3 cm
3.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,
且MN=12cm,EF=16cm,则弦MN和EF之间的距离
为 .
14cm或2cm
4.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是正方形.
D
·
O
A
B
C
E
证明:
∴四边形ADOE为矩形,
又∵AC=AB
∴ AE=AD
∴ 四边形ADOE为正方形.
5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。你认为AC和BD有什么关系?为什么?
证明:过O作OE⊥AB,垂足为E,
则AE=BE,CE=DE.
∴ AE-CE=BE-DE.
即 AC=BD.
.
A
C
D
B
O
E
注意:解决有关弦的问题,常过圆心作弦的弦心距,或作垂直于弦的直径,它是一种常用辅助线的添法.
6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.
● O
C
D
E
F
┗
解:连结OC.
● O
C
D
E
F
┗
设这段弯路的半径为Rm,则OF=(R-90)m.
根据勾股定理,得
解得R=545.
∴这段弯路的半径约为545m.
∵OE⊥CD
如图,⊙O的直径为10,弦AB=8,P为AB上的一个动点,那么OP长的取值范围 .
3cm≤OP≤5cm
B
A
O
P
垂径定理
内容
推论
辅助线
一条直线满足:①过圆心;②垂直于弦; ③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧.满足其中两个条件就可以推出其它三个结论(“知二推三”)
垂直于弦的直径平分弦,并且平分弦所对的
两条弧
两条辅助线:连半径,作弦心距
构造Rt△利用勾股定理计算或建立方程.
基本图形及变式图形(共23张PPT)
HS九(下)
教学课件
27.1 圆的认识
2.圆的对称性
第1课时 圆的对称性
1.理解掌握圆的对称性.(重点)
2.运用圆的对称性研究圆心角、弧、弦之间的关系.
(难点)
3.掌握圆心角、弧、弦之间的关系,并能加以应用.
(难点)
学习目标
熊宝宝要过生日了!要把蛋糕平均分成四块,你会分吗?
圆的对称性
(1)圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?
(2)你是怎么得出结论的?
圆的对称性: 圆是轴对称图形,其对称轴是任意一条过圆心的直线.
用折叠的方法
●O
1
圆是中心对称图形
.
O
A
B
180°
观察:1.将圆绕圆心旋转180°后,得到的图形与原图形重合吗?由此你得到什么结论呢?
2.把圆绕圆心旋转任意一个角度呢?仍与原来的圆重合吗?
O
α
圆是旋转对称图形,具有旋转不变性.
·
在同圆中探究
在⊙O中,如果∠AOB= ∠COD,那么,AB与CD,弦AB与弦CD有怎样的数量关系?
⌒
⌒
C
·
O
A
B
D
圆心角、弧、弦之间的关系
归纳:由圆的旋转不变性,我们发现:在⊙O中,如果∠AOB= ∠COD,那么, ,弦AB=弦CD
2
·
O
A
B
如图,在等圆中,如果∠AOB=∠CO ′ D,你发现的等量关系是否依然成立?为什么?
·
O ′
C
D
在等圆中探究
归纳:通过平移和旋转将两个等圆变成同一个圆,我们发现:如果∠AOB=∠COD,那么,AB=CD,弦AB=弦CD.
⌒
⌒
在同一个圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦相等.
①∠AOB=∠COD
②AB=CD
⌒ ⌒
③AB=CD
A
B
O
D
C
弧、弦与圆心角的关系定理
想一想:定理“在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.”中,可否把条件“在同圆或等圆中”去掉?为什么?
不可以,如图.
A
B
O
D
C
如果弧相等
那么
弧所对的圆心角相等
弧所对的弦相等
如果弦相等
那么
弦所对应的圆心角相等
弦所对应的优弧相等
弦所对应的劣弧相等
如果圆心角相等
那么
圆心角所对的弧相等
圆心角所对的弦相等
在同圆或等圆中
题设
结论
在同一个圆中,如果弧相等,那么它们所对的圆心角相等,所对的弦相等.
弧、弦与圆心角关系定理的推论
在同一个圆中,如果弦相等,那么它们所对的圆心角相等,所对的弧相等.
关系结构图
抢答题
1.等弦所对的弧相等. ( )
2.等弧所对的弦相等. ( )
3.圆心角相等,所对的弦相等. ( )
4. 如图,AB 是⊙O 的直径, BC = CD = DE ,
∠COD=35°,∠AOE = .
·
A
O
B
C
D
E
75°
×
√
×
解:
∵
如图,AB是⊙O 的直径, ∠COD=35°,求∠AOE 的度数.
·
A
O
B
C
D
E
关系定理及推论的运用
3
例1
证明:
∴ AB=AC.△ABC是等腰三角形.
又∠ACB=60°,
∴ △ABC是等边三角形 , AB=BC=CA.
∴ ∠AOB=∠BOC=∠AOC.
如图,在⊙O中, AB=AC ,∠ACB=60°,
求证:∠AOB=∠BOC=∠AOC.
·
A
B
C
O
⌒ ⌒
提示:本题告诉我们,弧、圆心角、弦灵活转化是解题的关键.
∵AB=CD,
⌒ ⌒
例2
填一填: 如图,AB、CD是⊙O的两条弦.
(1)如果AB=CD,那么________,______________.
(2)如果 ,那么________,________________.
(3)如果∠AOB=∠COD,那么________,_________.
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE
与OF相等吗?为什么?
·
C
A
B
D
E
F
O
AB=CD
AB=CD
AB=CD
(
(
∠AOB= ∠COD
∠AOB= ∠COD
AB=CD
(
(
AB=CD
(
(
·
C
A
B
D
E
F
O
1.如果两个圆心角相等,那么 ( )
A.这两个圆心角所对的弦相等
B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等
D.以上说法都不对
3.弦长等于半径的弦所对的圆心角等于 .
D
60 °
2.在同圆中,圆心角∠AOB=2∠COD,则AB与CD
的关系是 ( )
⌒ ⌒
A
A. AB=2CD
⌒ ⌒
B. AB>CD
⌒ ⌒
C. AB⌒ ⌒
D. 不能确定
4.如图,已知AB、CD为⊙O的两条弦,
求证:AB=CD.
.
C
A
B
D
O
证明:连结AO,BO,CO,DO.
如图,在⊙O中,2∠AOB=∠COD,那么CD=2AB成立吗?CD=2AB也成立吗?请说明理由;如不是,那它们之间的关系又是什么?
⌒ ⌒
答:CD=2AB成立,CD=2AB不成立.不是,取 的中点E,连接OE.那么∠AOB=∠COE=∠DOE,所以 = = . =2 ,弦AB=CE=DE,在△CDE中,CE+DE>CD,即CD<2AB.
⌒ ⌒
A
B
C
D
E
O
圆心角
弦、弧、圆心角的关系定理
在同圆或等圆中
概念:顶点在圆心的角
应用提醒
①要注意前提条件;
②要灵活转化.(共45张PPT)
HS九(下)
教学课件
27.1 圆的认识
第27章 圆
3. 圆周角
学习目标
1.理解圆周角的概念,会叙述并证明圆周角定理.
2.理解圆周角与圆心角的关系并能运用圆周角定理解
决简单的几何问题.(重点、难点)
3.理解掌握圆周角定理的推论及其证明过程和运用.(难点)
问题1 什么叫圆心角?指出图中的圆心角?
顶点在圆心的角叫圆心角, ∠BOC.
问题2 如图,∠BAC的顶点和边有哪些特点
A
∠BAC的顶点在☉O上,角的两边分别交☉O于B、C两点.
C
A
E
D
B
思考: 图中过球门A、C两点画圆,球员射中球门的难易程度与他所处的位置B、D、E有关(张开的角度大小)、仅从数学的角度考虑,球员应选择从哪一点的位置射门更有利?
顶点在圆上,并且两边都与圆相交的角叫做圆周角.
(两个条件必须同时具备,缺一不可)
圆周角的定义
1
·
C
O
A
B
·
C
O
B
·
C
O
B
A
A
·
C
O
A
B
·
C
O
B
·
C
O
B
A
A
判一判:下列各图中的∠BAC是否为圆周角并简述理由.
(2)
(3)
顶点不在圆上
顶点不在圆上
边AC没有和圆相交
√
√
√
如图,线段AB是☉O的直径,点C是 ☉O上的任意一点(除点A、B外),那么,∠ABC 就是直径AB所对的圆周角,想一想,∠ACB会是怎样的角?
·
O
A
C
B
解:∵OA=OB=OC,∴△AOC、
△BOC都是等腰三角形.
∴ ∠OAC=∠OCA,∠OBC=∠OCB.
又∵ ∠OAC+∠OBC+∠ACB=180°.
∴ ∠ACB=∠OCA+∠OCB=180°÷2=90°.
圆周角和直径的关系
圆周角和直径的关系:
半圆或直径所对的圆周角都相等,都等于90°.
如图,AB是☉O的直径,∠A=80°.求∠ABC的大小.
O
C
A
B
解:∵AB是☉O的直径,
∴∠ACB=90°(直径所对的圆周角等于90°.)
∴∠ABC=180°-∠A-∠ACB
=180°-90°-80°=10°.
例1
如图,连接BO,CO,得圆心角∠BOC.试猜想∠BAC与∠BOC存在怎样的数量关系.
圆周角定理及其推论
2
圆心O 在∠BAC 的内部
圆心O在∠BAC的一边上
圆心O在∠BAC
的外部
推导与论证
圆心O在∠BAC的一边上(特殊情形)
OA=OC
∠A= ∠C
∠BOC= ∠ A+ ∠C
O
A
B
D
O
A
C
D
O
A
B
C
D
圆心O在∠BAC的内部
O
A
C
D
O
A
B
D
O
A
B
D
C
O
A
D
C
O
A
B
D
C
O
A
D
O
A
B
D
C
O
A
D
O
A
B
D
圆心O在∠BAC的外部
问题1 如图,OB,OC都是⊙O的半径,点A ,D 是上任意两点,连接AB,AC,BD,CD.∠BAC与∠BDC相等吗?请说明理由.
D
∴∠BAC=∠BDC
相等,理由如下:
圆周角定理的推论
3
D
A
B
O
C
E
F
问题2 如图,若 ∠A与∠B相等吗?
相等
想一想:(1)反过来,若∠A=∠B,那么
成立吗?
(2)若CD是直径,你能求出∠A的度数吗?
圆周角定理:
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;
相等的圆周角所对的弧也相等.
圆周角定理
A1
A2
A3
推论1:90°的圆周角所对的 弦是直径.
试一试:
1.如图,点A、B、C、D在☉O上,点A与点D在点B、C所在直线的同侧,∠BAC=35 .
(1)∠BOC= ,理由
是 ;
(2)∠BDC= ,理由是 .
70
35
同弧所对的圆周角相等
一条弧所对的圆周角等于它所对的圆心角的一半
(1)完成下列填空:
∠1= .
∠2= .
∠3= .
∠5= .
2.如图,点A、B、C、D在同一个圆上,AC、BD为四边形ABCD的对角线.
∠4
∠8
∠6
∠7
A
B
C
D
O
1
(
(
(
(
(
(
(
(
2
3
4
5
6
7
8
如图,分别求出图中∠x的大小.
60°
x
30°
20°
x
解:(1)∵同弧所对圆周角相等,∴∠x=60°.
A
D
B
E
C
(2)连接BF,
F
∵同弧所对圆周角相等,
∴∠ABF=∠D=20°,∠FBC=∠E=30°.
∴∠x=∠ABF+∠FBC=50°.
例2
如图,⊙O的直径AC为10cm,弦AD为6cm.
(1)求DC的长;
(2)若∠ADC的平分线交⊙O
于B, 求AB、BC的长.
B
解:(1)∵AC是直径,
∴ ∠ADC=90°.
在Rt△ADC中,
例3
在Rt△ABC中,AB2+BC2=AC2,
(2)∵ AC是直径,
∴ ∠ABC=90°.
∵BD平分∠ADC,
∴∠ADB=∠CDB.
又∵∠ACB=∠ADB , ∠BAC=∠BDC .
∴ ∠BAC=∠ACB,
∴AB=BC.
B
提示:解答圆周角有关问题时,若题中出现“直径”这个条件,则考虑构造直角三角形来求解.
如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为( )
A.30° B.45° C.60° D.75°
解析:∵BD是⊙O的直径,
∴∠BCD=90°.
∵∠CBD=30°,
∴∠D=60°,∴∠A=∠D=60°.故选C.
方法总结:在圆中,如果有直径,一般要找直径所对的圆周角,构造直角三角形解题.
如图,AB是⊙O的直径,弦CD交AB于点P,
∠ACD=60°,∠ADC=70°.求∠APC的度数.
. O
A
D
C
P
B
解:连结BC,则∠ACB=90°,
∠DCB=∠ACB-∠ACD=
90°-60°=30°.
又∵∠BAD=∠DCB=30°,
∴∠APC=∠BAD+∠ADC=30°+70°=100°.
例4
如果一个圆经过一个多边形的各个顶点,这个圆就叫作这个多边形的外接圆.这个多边形叫做圆的内接多边形.
圆内接四边形
4
如图,四边形ABCD为⊙O的内接四边形,⊙O为四边形ABCD的外接圆.
探究性质
猜想:∠A与∠C, ∠B与∠D之间
的关系为:
∠A+ ∠C=180 ,
∠B+ ∠D=180
想一想:
如何证明你的猜想呢?
∵ 弧BCD和弧BAD所对的圆心角的和是周角,
∴∠A+∠C=180°,
同理∠B+∠D=180°,
推论:圆的内接四边形的对角互补.
证明猜想
归纳总结
C
O
D
B
A
∵ 弧BCD和弧BAD所对的圆心角的和是周角,
∴∠A+∠C=180°,
同理∠B+∠D=180°,
E
延长BC到点E,有
∠BCD+∠DCE=180°.
∴∠A=∠DCE.
图中∠A与∠DCE的大小有何关系?
推论:圆的内接四边形的任何一个外角都等于它的内对角.
C
O
D
B
A
E
归纳总结
1.四边形ABCD是⊙O的内接四边形,且∠A=110°,
∠B=80°,则∠C= ,∠D= .
2.⊙O的内接四边形ABCD中,∠A∶∠B∶∠C=
1∶2∶3 ,则∠D= .
70
100
90
如图,AB为⊙O的直径,CF⊥AB于E,交⊙O于D,AF交⊙O于G. 求证:∠FGD=∠ADC.
证明:∵四边形ACDG内接于⊙O,
∴∠FGD=∠ACD.
又∵AB为⊙O的直径,CF⊥AB于E,
∴AB垂直平分CD,
∴AC=AD,
∴∠ADC=∠ACD,
∴∠FGD=∠ADC.
方法总结:圆内接四边形的性质是沟通角相等关系的重要依据.
例5
如图,在⊙O的内接四边形ABCD中,∠BOD=120°,那么∠BCD是 ( )
A.120° B.100°
C.80° D.60°
解析:∵∠BOD=120°,∴∠A=60°,∴∠C=180°-60°=120°,故选A.
A
解:设∠A,∠B,∠C的度数分别对于2x,3x,6x,
在圆内接四边形ABCD中, ∠A,∠B,∠C的度数之比是2︰3︰6.求这个四边形各角的度数.
∵四边形ABCD内接于圆,
∴ ∠A + ∠C=∠B+∠D=180°.
∵2x+6x=180°,
∴ x=22.5°,
∴ ∠A=45°, ∠B=67.5°, ∠C =135°,
∠D=180°- 67.5°=112.5°.
例6
1.判断
(1)同一个圆中等弧所对的圆周角相等 ( )
(2)相等的弦所对的圆周角也相等 ( )
(3)同弦所对的圆周角相等 ( )
√
×
×
2.已知△ABC的三个顶点在⊙O上,∠BAC=50°,
∠ABC=47°, 则∠AOB= .
B
A
C
O
166°
3.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为 ( )
A.30° B.40° C.50° D.60°
A
【规律方法】解决圆周角和圆心角的计算和证明问题,要准确找出同弧所对的圆周角和圆心角,然后再灵活运用圆周角定理.
A
B
C
D
O
4.如图,四边形ABCD内接于⊙O,如果∠BOD=130°,则∠BCD的度数是
( )
A. 115° B.130°
C.65° D. 50°
5.如图,等边三角形ABC内接于⊙O,P是AB上的一点,则∠APB= .
A
B
C
P
C
120°
6.如图,已知圆心角∠AOB=100°,则圆周角
∠ACB= ,∠ADB= .
D
A
O
C
B
130°
50°
7.如图,△ABC的顶点A、B、C都在⊙O上,∠C=30°,AB=2,则⊙O的半径是 .
解析:连结OA、OB,
∵∠C=30° ,∴∠AOB=60°.
又∵OA=OB ,
∴△AOB是等边三角形.
∴OA=OB=AB=2,即半径为2.
2
C
A
B
O
A
O
B
C
∴∠ACB=2∠BAC
证明:
8. 如图,OA,OB,OC都是⊙O的半径,∠AOB=
2∠BOC. 求证:∠ACB=2∠BAC.
∠AOB=2∠BOC,
9.船在航行过程中,船长通过测定角数来确定是否遇到暗礁,如图,A、B表示灯塔,暗礁分布在经过A、B两点的一个圆形区域内,优弧AB上任一点C都是有触礁危险的临界点,∠ACB就是“危险角”,当船位于安全区域时,∠α与“危险角”有怎样的大小关系?
解:当船位于安全区域时,即船位于暗礁区域外(即⊙O外) ,与两个灯塔的夹角∠α小于“危险角”.
如图,在△ABC中,AB=AC,以AB为直径的圆交BC于D,交AC于E,
(1)BD与CD的大小有什么关系 为什么
(2)求证: .
A
B
C
D
E
A
B
C
D
E
∵AB是圆的直径,点D在圆上,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC, ∴BD=CD.
∵AD平分顶角∠BAC,即∠BAD=∠CAD,
(同圆或等圆中相等的圆周角所对弧相等)
解:BD=CD.理由是:连结AD,
圆心角
类比
圆周角
圆周角定义
圆周角定理
圆周角定理的推论
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.
1.90°的圆周角所对的弦是直径;
2.圆内接四边形的对角互补.
1.顶点在圆上,2.两边都与圆相交的角(二者必须同时具备)
圆周角与直
线的关系
半圆或直径所对的圆周角都相等,都等于90°(直角).(共25张PPT)
HS九(下)
教学课件
27.4 正多边形和圆
第27章 圆
1.了解正多边形和圆的有关概念.
2.理解并掌握正多边形半径、中心角、边心距、边
长之间的关系. (重点)
3.会应用正多边形和圆的有关知识解决实际问题.
(难点)
学习目标
问题:观看大屏幕上这些美丽的图案,都是在日常生活中我们经常能看到的.你能从这些图案中找出类似的图形吗
问题1 什么叫做正多边形?
各边相等,各角也相等的多边形叫做正多边形.
问题2 矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?
不是,因为矩形不符合各边相等;
不是,因为菱形不符合各角相等;
注意:正多边形
各边相等
各角相等
缺一不可
正多边形的对称性
1
问题3 正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?
归纳:正n边形都是轴对称图形,都有n条对称轴,只有边数为偶数的正多边形才是中心对称图形.
什么叫做正多边形?
问题1
问题4 正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?
正多边形的性质
O
A
B
C
D
问题1 以正四边形为例,根据对称轴的性质,你能得出什么结论?
E
F
G
H
EF是边AB、CD的垂直平分线,∴OA=OB,OD=OC.
GH是边AD、BC的垂直平分线,
∴OA=OD;OB=OC.
∴OA=OB=OC=OD.
∴正方形ABCD有一个以点O为圆心的外接圆.
2
互动探究
O
A
B
C
D
E
F
G
H
AC是∠DAB及∠DCB的角平分线,BD是∠ABC及∠ADC的角平分线,
∴OE=OH=OF=OG.
∴正方形ABCD还有一个以点O为圆心的内切圆.
所有的正多边形是不是也都有一个外接圆和一个内切圆?
任何正多边形都有一个外接圆和一个内切圆.
想一想
O
A
B
C
D
E
F
G
H
R
r
正多边形的外接圆和内切圆的公共圆心,叫作正多边形的中心.
外接圆的半径叫作正多边形的半径.
内切圆的半径叫作正多边形的边心距.
正多边形每一条边所对的圆心角,叫做正多边形的中心角.正多边形的每个中心角都等于
问题1
中心角
A
B
C
D
E
F
O
半径R
边心距r
中心
正多边
形边数 内角 中心角 外角
3
4
6
n
60 °
120 °
120 °
90 °
90 °
90 °
120 °
60 °
60 °
正多边形的外角=中心角
完成下面的表格:
如图,已知半径为4的圆内接正六边形ABCDEF:
①它的中心角等于 度 ;
② OC BC (填>、<或=);
③△OBC是 三角形;
④圆内接正六边形的面积是△OBC面积的 倍.
⑤圆内接正n边形面积公
式:________________________.
C
D
O
B
E
F
A
P
60
=
等边
6
正多边形的有关计算
3
有一个亭子,它的地基是半径为4 m的正六边形,求地基的周长和面积 (精确到0.1 m2).
C
D
O
E
F
A
P
抽象成
例1
利用勾股定理,可得边心距
亭子地基的面积
在Rt△OMB中,OB=4, MB=
4m
O
A
B
C
D
E
F
M
r
解:过点O作OM⊥BC于M.
问题1 正n边形的中心角怎么计算?
C
D
O
B
E
F
A
P
问题2 正n边形的边长a,半径R,边心距r之间有什么关系?
a
R
r
问题3 边长a,边心距r的正n边形的面积如何计算?
其中l为正n边形的周长.
想一想
如图所示,正五边形ABCDE内接于⊙O,则∠ADE的度数是 ( )
A.60° B.45° C. 36° D. 30°
·
A
B
C
D
E
O
C
2.作边心距,构造直角三角形.
1.连半径,得中心角;
O
A
B
C
D
E
F
R
M
r
·
圆内接正多边形的辅助线
O
边心距r
边长一半
半径R
C
M
中心角一半
方法归纳
正多边形边数 半径 边长 边心距 周长 面积
3
4 1
6
1. 填表
2
1
2
8
4
2
2
12
2. 若正多边形的边心距与半径的比为1:2,则这个多边形的边数是 .
3
4. 要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要____cm.
也就是要找这个正方形外接圆的直径
3.如图是一枚奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为 ___度.(不取近似值)
5.如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,求⊙O的面积.
解:∵正方形的面积等于4,
则半径为
∴⊙O的面积为
∴正方形的边长AB=2.
A
B
C
D
E
F
P
6.如图,正六边形ABCDEF的边长为 ,点P为六边形内任一点.则点P到各边距离之和是多少?
A
B
C
D
E
F
P
∴点P到各边距离之和=3BD=3×6=18.
解:过P作AB的垂线,分别交AB、DE于H、K,连结
BD,作CG⊥BD于G.
G
H
K
∴P到AF与CD的距离之和,及P到EF、
BC的距离之和均为HK的长.
∵六边形ABCDEF是正六边形
∴AB∥DE,AF∥CD,BC∥EF,
∵BC=CD,∠BCD=∠ABC=∠CDE=120°,
∴∠CBD=∠BDC=30°,BD∥HK,且BD=HK.
∵CG⊥BD,
∴BD=2BG=2×BC×cos∠CBD=6.
如图,M,N分别是☉O内接正多边形AB,BC上的点,
且BM=CN.
(1)求图1中∠MON=_______;图2中∠MON= ;
图3中∠MON= ;
(2)试探究∠MON的度数与正n边形的边数n的关系.
A
B
C
D
E
A
B
C
D
.
A
B
C
M
N
M
N
M
N
O
O
O
90 °
72 °
120 °
图1
图2
图3
正多边形的性质
正多边形的
有关概念
正多边形的
有关计算
添加辅助线的方法:
连半径,作边心距
中心
半径
边心距
中心角
正多边形的对称性(共21张PPT)
HS九(下)
教学课件
27.3 圆中的计算问题
第27章 圆
第2课时 圆锥的侧面积和全面积
学习目标
1.体会圆锥侧面积的探索过程.(重点)
2.会求圆锥的侧面积,并能解决一些简单的实际问
题.(重点、难点)
图文欣赏
顶点
母线
底面半径
侧面
高
圆锥的形成
与圆锥的侧面展开图相关的计算
1
圆锥的高
母线
S
A
O
B
r
我们把连接圆锥的顶点S和底面圆上任一点的连线SA,SB 等叫做圆锥的母线.
圆锥的母线
圆锥有无数条母线,它们都相等.
圆锥的高
从圆锥的顶点到圆锥底面圆心之间的距离是圆锥的高.
重要数量关系
由勾股定理得:
如果用r表示圆锥底面的半径, h表示圆锥的高线长, l表示圆锥的母线长,那么r、h、l 之间数量关系是:
r2+h2= 2
h
O
r
根据下列条件求值(其中r、h、l 分别是圆锥的底面半径、高线、母线长)
(1)l = 2,r=1 则 h=_______.
( 2)h =3, r=4 则 l =_______.
(3)l = 10, h = 8 则r=_______.
5
6
O
h
r
填一填
l
o
r
圆锥的侧面展开图是什么图形?
扇形
圆锥的侧面展开图是扇形
想一想
问题:
1.沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长与底面的周长有什么关系?
2.圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?
相等
母线
圆锥侧面展开图的面积
l
o
侧面
展开图
l
r
其侧面展开图扇形的半径=母线的长l
侧面展开图扇形的弧长=底面周长
圆锥的侧面积计算公式
公式推导
一个圆锥的侧面展开图是一个圆心角为120°、弧长为20 的扇形,试求该圆锥底面的半径及它的母线的长.
解:设该圆锥的底面的半径为r,母线长为a.
可得
r=10.
可得
a=30.
又
例1
如图,圆锥形的烟囱帽,它的底面直径为80cm,母线为50cm.在一块大铁皮上裁剪时,如何画出这个烟囱帽的侧面展开图?求出该侧面展开图的面积.
α
O
h
r
l
例2
α
O
h
r
l
解:该烟囱的侧面展开图是扇形,如图所示.设该
扇形的面积为S.
蒙古包可以近似地看作由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为35m2,高为3.5m,外围高为1.5m的蒙古包,至少需要多少平方米的毛毡(精确到1m2)?
例3
解:如图是一个蒙古包示意图.
根据题意,下部圆柱的底面积为35m2,高为1.5m;上部圆锥的高为3.5-1.5=2(m).
圆柱的底面积半径为
圆锥的母线长为
侧面积为2π×3.34×1.5≈31.46(平方米),
侧面展开扇形的弧长为
圆锥的侧面积为
20×(31.46+40.81)≈1446(平方米).
如图所示的扇形中,半径R=10,圆心角θ=144°,用这个扇形围成一个圆锥的侧面.
(1)则这个圆锥的底面半径r= .
(2)这个圆锥的高h= .
A
C
B
θ
R=10
O
r
4
1 .圆锥的底面半径为3cm,母线长为6cm,则这个圆锥侧面展开图扇形的圆心角是_______.
2 .一个扇形,半径为30cm,圆心角为120度,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为_____ .
180°
10cm
3.已知圆锥的底面的半径为3cm,高为4cm,则它的侧面积是 ,全面积是 .
15πcm2
24πcm2
4.(1)在半径为10的圆的铁片中,要裁剪出一个直角扇形,求能裁剪出的最大的直角扇形的面积?
(2)若用这个最大的直角扇形恰好围成一个圆锥,求这个圆锥的底面圆的半径?
(3)能否从最大的余料③中剪出一个圆做该圆锥的底面?请说明理由.
A
B
C
①
②
③
O
解:(1)连结BC,则BC=20,
∵∠BAC=90°,AB=AC,
(3)延长AO交⊙O于点F,交扇形于点E,EF=
最大半径为
∴不能.
A
B
C
①
②
③
O
∴S扇形=
∴AB=AC=
(2)圆锥侧面展开图的弧长为:
E
F
r2+h2=l2
S圆锥侧=πrl.
圆锥的高
母线
r
S
A
O
B
h
l
o
侧面
展开图
r
底面
①其侧面展开图扇形的半径=母线的长l
②侧面展开图扇形的弧长=底面周长
重要图形
重要结论(共34张PPT)
HS九(下)
教学课件
27.3 圆中的计算问题
第27章 圆
第1课时 弧长和扇形面积
学习目标
1.理解弧长和扇形面积公式的探求过程.(难点)
2.会利用弧长和扇形面积的计算公式进行计算.
(重点)
图片赏析
问题1 如图,在运动会的4×100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?
问题2 怎样来计算弯道的“展直长度”?
因为要保证这些弯道的“展直长度”是一样的.
问题1 半径为R的圆,周长是多少?
O
R
问题2 下图中各圆心角所对的弧长分别是圆周长的几分之几
O
R
180°
O
R
90°
O
R
45°
O
R
n°
与弧长相关的计算
1
(1) 圆心角是180°,占整个周角的 ,因此它所对的弧长是圆周长的__________.
(2) 圆心角是90°,占整个周角的 ,因此它所对的弧长是圆周长的__________.
(3) 圆心角是45°,占整个周角的 ,因此它所对的弧长是圆周长的__________.
(4) 圆心角是n°,占整个周角的 ,因此它所对的弧长是圆周长的__________.
注意: 用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的.
算一算 已知弧所对的圆心角为60°,半径是4,则弧长为____.
弧长公式
·
O
A
解:设半径OA绕轴心O逆时针
方向旋转的度数为n°.
解得 n≈90°
因此,滑轮旋转的角度约为90°.
一滑轮起重机装置(如图),滑轮的半径r=10cm,当重物上升15.7cm时,滑轮的一条半径OA绕轴心O逆时针方向旋转多少度(假设绳索与滑轮之间没有滑动,
取3.14)?
例1
古希腊埃拉托塞尼曾给出一个估算地球周长(或子午周长)的简单方法.如图,点S和点A分别表示埃及的塞伊尼和亚历山大两地,亚历山大在塞伊尼的北方,两地的经度大致相同,两地的实际距离为5 000希腊里(1 希腊里≈158.5 m).当太阳光线在塞伊尼直射时,同一时刻在亚历山大测量太阳光线偏离直射方向的角为α.实际测得α是7.2°,由此估算出了地球的周长,你能进行计算吗?
O
α
A
S
例2
O
α
A
S
解:∵太阳光线可看作平行的,∴圆心角∠AOS=α=7.2°.
设地球的周长为C1,则
答:地球的周长约为39625km.
制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm,精确到1mm)
解:由弧长公式,可
得弧AB的长
因此所要求的展直长度l=2×700+1570=2970(mm).
答:管道的展直长度为2970mm.
700mm
700mm
R=900mm
(
100 °
A
C
B
D
O
圆的一条弧和经过这条弧的端点的两条半径所围成的图形叫作扇形.
如图,黄色部分是一个扇形,记作扇形OAB.
半径
半径
O
B
A
圆心角
弧
O
B
A
扇形
与扇形面积相关的计算
2
下列图形是扇形吗?
√
×
×
×
√
问题1 半径为r的圆,面积是多少?
O
r
问题2 下图中各扇形面积分别是圆面积的几分之几,具体是多少呢
合作探究
圆心角占 周角的比例 扇形面积占 圆面积的比例 扇形的
面积
=
O
r
180°
O
r
90°
O
r
45°
O
r
n°
扇形面积公式
半径为r的圆中,圆心角为n°的扇形的面积
注意: ①公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;②公式要理解记忆(即按照上面推导过程记忆).
___大小不变时,对应的扇形面积与 __ 有关,
___ 越长,面积越大.
圆心角
半径
半径
圆的 不变时,扇形面积与 有关, 越大,面积越大.
圆心角
半径
圆心角
总结:扇形的面积与圆心角、半径有关。
O ●
A
B
D
C
E
F
O ●
A
B
C
D
问题 扇形的面积与哪些因素有关?
问题:扇形的弧长公式与面积公式有联系吗?
想一想 扇形的面积公式与什么公式类似?
A
B
O
O
类比学习
如图,圆心角为60°的扇形的半径为10cm.求这个扇形的面积和周长.(精确到0.01cm2和0.01cm)
O
R
60°
解:∵n=60,r=10cm,
∴扇形的面积为
扇形的周长为
例3
1.已知半径为2cm的扇形,其弧长为 ,则这个扇形的面积S扇= .
2.已知扇形的圆心角为120°,半径为2,则这个扇形的面积S扇= .
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.
(1)证明:连结OC.
∵AC=CD,∠ACD=120°,
∴∠A=∠D=30°.
∵OA=OC,
∴∠ACO=∠A=30°.
∴∠OCD=180°-∠A-∠D-∠ACO=90°.
即OC⊥CD,
∴CD是⊙O的切线.
例4
(2)解: ∵∠A=30°,
∴∠COB=2∠A=60°.
在Rt△OCD中,
如图,水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积.(精确到0.01cm)
(1)
O .
B
A
C
讨论:(1)截面上有水部分的面积是指图上哪一部分?
阴影部分.
例4
O.
B
A
C
D
(2)
O.
B
A
C
D
(3)
(2)水面高0.3 m是指哪一条线段的长?这条线段应该怎样画出来?
线段DC.过点O作OD垂直符号于AB并长交圆O于C.
(3)要求图中阴影部分面积,应该怎么办?
阴影部分面积=扇形OAB的面积-
OAB的面积
(3)解:如图,连结OA,OB,过点O作弦AB的垂
线,垂足为D,交AB于点C,连结AC.
∵ OC=0.6, DC=0.3,
∴ OD=OC- DC=0.3,
∴ OD=DC.
又 AD ⊥DC,
∴AD是线段OC的垂直平分线,
∴AC=AO=OC.
从而 ∠AOD=60 , ∠AOB=120 .
O.
B
A
C
D
(3)
有水部分的面积:
S=S扇形OAB - SΔOAB
O
B
A
C
D
(3)
O
O
弓形的面积=扇形的面积±三角形的面积
S弓形=S扇形-S三角形
S弓形=S扇形+S三角形
弓形的面积公式
知识要点
C
B.
C. D.
1.已知弧所对的圆周角为90°,半径是4,则弧长为 .
2.如图,Rt△ABC中,∠C=90°, ∠A=30°,BC=2,O、H分别为AB、AC的中点,将△ABC顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过的面积为 ( )
A
B
C
O
H
C1
A1
H1
O1
3.如图,☉A、☉B、 ☉C、 ☉D两两不相交,且半径都
是2cm,则图中阴影部分的面积是 .
A
B
C
D
解析:点A所经过的路线的长为三个半径为2,圆心角为120°的扇形弧长与两个半径为 ,圆心角为90°的扇形弧长之和,
即
4.如图,Rt△ABC的边BC位于直线l上,AC= ,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地翻转,当点A第3次落在直线l上时,点A所经过的路线的长为________(结果用含π的式子表示).
5.(例题变式题)如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.9cm,求截面上有水部分的面积.
O
A
B
D
C
E
解:
6. 如图,一个边长为10cm的等边三角形模板ABC在水平桌面上绕顶点C按顺时针方向旋转到△A'B'C的位置,求顶点A从开始到结束所经过的路程为多少.
A
B
A'
B'
C
解:由图可知,由于∠A'CB'=60°,则等边三角形木板绕点C按顺时针方向旋转了120°,即∠ACA' =120°,这说明顶点A经过的路程长等于弧AA' 的长.
∵等边三角形ABC的边长为10cm,
∴弧AA' 所在圆的半径为10cm.
∴l弧AA'
答:顶点A从开始到结束时所经过的路程为
弧长
计算公式:
扇形
定义
公式
阴影部分面积
求法:整体思想
弓形
公式
S弓形=S扇形-S三角形
S弓形=S扇形+S三角形
割补法