2.3电磁感应定律的应用 同步练习
一、单选题
1.光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示)。一个小金属块从抛物线上y=b(b>a)处以初速v沿抛物线下滑。假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是( )
A.mgb B.
C.mg(b-a) D.
2.如图所示,间距为L的两根平行金属导轨弯成“L”形,竖直导轨面与水平导轨面均足够长,整个装置处于竖直向上大小为B的匀强磁场中。质量均为m、阻值均为R的导体棒ab、cd均垂直于导轨放置,ab导体棒在竖直导轨的左侧。两导体棒与导轨间动摩擦因数均为μ,当导体棒cd在水平恒力作用下以速度v0沿水平导轨向右匀速运动时,释放导体棒ab,它在竖直导轨上匀加速下滑。某时刻将导体棒cd所受水平恒力撤去,经过一段时间,导体棒cd静止,此过程流经导体棒cd的电荷量为q(导体棒ab、cd与导轨间接触良好且接触点及金属导轨的电阻不计,已知重力加速度为g),则下列判断错误的是( )
A.导体棒cd受水平恒力作用时流经它的电流
B.导体棒ab匀加速下滑时的加速度大小
C.导体棒cd在水平恒力撤去后它的位移为
D.导体棒cd在水平恒力撤去后它产生的焦耳热为
3.如图所示,有界匀强磁场的宽度为,磁感应强度大小为B、方向垂直纸面向里。正方形是粗细均匀的导体框,总电阻为4R,边长为L,该导体框处于纸面内。导体框在外力作用下沿对角线(垂直于磁场边界)由Ⅰ位置匀速运动到Ⅲ位置,速度大小为v,则导体框( )
A.由Ⅰ位置到Ⅲ位置过程中,感应电流的方向不变
B.由Ⅰ位置到Ⅲ位置过程中,感应电流的方向先顺时针后逆时针
C.由Ⅰ位置到Ⅱ位置过程中,最大感应电流为
D.由Ⅱ位置到Ⅲ位置过程中,最大感应电流为
4.如图所示,竖直放置的螺线管与导线构成回路,导线所围区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平桌面上有一导体圆环。若导体圆环对水平桌面的压力大于其重力,则导体所围区域内磁场的磁感应强度随时间变化情况可能是( )
A. B.
C. D.
5.如图甲所示,等边三角形金属框ACD的边长为L,单位长度的电阻为r,E为CD边的中点,三角形ADE所在区域内有磁感应强度垂直纸面向外、大小随时间变化的匀强磁场,图乙是匀强磁场的磁感应强度B随时间t变化的图像。下列说法正确的是( )
A.t0时刻,穿过金属框的磁通量为
B.5t0时刻,金属框内的感应电流由大变小
C.0~5t0时间内通过导线某横截面的电荷量为
D.5t0~8t0时间内,A、E两点的电势差的绝对值恒为
6.如图甲所示,光滑平行金属导轨水平固定放置,两导轨相距,导轨左端有两个阻值均为的电阻并联,导轨电阻不计。一根质量、接入电路的电阻的金属棒置于导轨上处,并与导轨垂直。一侧存在方向垂直导轨平面向下的磁场,其磁感应强度B与位置x的关系如图乙所示。金属棒在外力F作用下从以初速度开始沿导轨向右运动,且在运动过程中金属棒受到的安培力大小不变。下列说法正确的是( )
A.金属棒向右做匀减速直线运动
B.金属棒在处与处的瞬时速度大小之比为2∶1
C.金属棒从处运动到处的过程中,通过每个电阻的电荷量均为
D.金属棒从处运动到处的过程中,外力F所做的功为
7.如图所示,匀强磁场的左边界为一竖直面,磁感应强度大小为B、方向垂直纸面向里,范围足够大。由导体制成的半径为R、粗细均匀的圆环,以水平速度v垂直磁场方向匀速进入匀强磁场。当圆环运动到图示位置时,a、b两点为匀强磁场的左边界与圆环的交点,O点为圆环的圆心,已知,则a、b两点的电势差为( )
A. B. C. D.
8.如图所示,有一边长为L的正方形导线框,其质量为m,从匀强磁场上方由静止下落,此时底边与磁场上边界的距离为。导线框底边进入匀强磁场区域后,线框开始匀速运动,匀强磁场的上、下边界均水平且宽度也为L,重力加速度大小为g,不计空气阻力,则线框在穿越匀强磁场的过程中产生的焦耳热Q为( )
A. B. C. D.
二、多选题
9.在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20cm2。螺线管导线电阻r=1.0Ω,R1=4.0Ω,R2=5.0Ω,C=30μF。在一段时间内,垂直穿过螺线管的磁场的磁感应强度B的方向如图甲所示,大小按如图乙所示的规律变化,则下列说法中正确的是( )
A.螺线管中产生的感应电动势为0.8V
B.闭合K,电路中的电流稳定后,电容器的下极板带负电
C.闭合K,电路中的电流稳定后,电阻R1的电功率为2.56×10-2W
D.闭合K,电路中的电流稳定后,断开K,则K断开后,流经R2的电荷量为1.8×102-2C
10.如图所示,用恒力将闭合线圈自静止开始(不计摩擦)从图示位置向左加速拉出有界匀强磁场,则在此过程中( )
A.线圈中产生方向的感应电流
B.线圈向左运动做匀变速直线运动
C.线圈向左运动且加速度逐渐增大
D.线圈中感应电流逐渐增大
11.如图所示,足够长的光滑平行金属导轨倾斜固定放置,导轨所在平面的倾角,导轨下端接有阻值为R的电阻,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度大小为B.质量为m、长为L、电阻不计的金属棒刚好能够放在导轨上,在沿导轨平面且与棒垂直的拉力F作用下金属棒沿导轨向上做初速度为零、加速度为(重力加速度大小为g)的匀加速直线运动,金属棒运动过程中始终与导轨垂直并与两导轨接触良好,金属导轨的电阻不计,取。则在金属棒沿导轨向上运动时间的过程中,下列说法正确的是( )
A.时刻,金属棒受到的安培力大小为
B.时刻拉力F的大小为
C.时间内通过电阻R的电荷量为
D.整个过程中,拉力F做的功大于电阻R上产生的焦耳热与金属棒动能增加量之和
12.如图所示,水平线MN以上空间存在足够大的匀强磁场,磁感应强度大小为B、方向水平。质量为m、电阻为R粗细均匀的单匝矩形线圈,ab=L、bc=1.2L,处于匀强磁场中,线圈平面与磁感线垂直。将线圈从距离MN为h处自由释放,线圈运动过程中ab边始终保持与MN平行,当线圈ab边通过MN时刚好开始做匀速运动。若以a为轴、在纸面内将线圈顺时针旋转90°后再自由释放,线圈运动过程中ad边也始终保持与MN平行。以下判断正确的是( )
A.线圈ad边到达MN时,仍然会开始做匀速运动
B.线圈cd边到达MN时速度的值大于bc边到达MN时速度的值
C.线圈两次穿越磁场的过程中,通过线圈横截面的电荷量相同
D.线圈两次穿越磁场的过程中,安培力对线圈冲量的大小相等
三、实验题
13.某同学利用如图甲所示装置研究磁铁下落过程中的重力势能与电能之间的相互转化,螺线管的内阻,初始时滑动变阻器的滑片位于正中间20的位置,打开传感器,将质量为m的磁铁置于螺线管正上方静止释放,磁铁上表面为N极.穿过螺线管后掉落到海绵垫上并静止(磁铁下落中受到的电磁阻力远小于磁铁重力,不发生转动),释放点到海绵垫的高度差为h.计算机屏幕上显示出如图乙所示的曲线.
(1)磁铁穿过螺线管的过程中,产生第一峰值时线圈中的感应电动势约为________V.
(2)图像中UI出现前后两个峰值,对比实验过程发现,这两个峰值是磁铁刚进入螺线管内部和刚从内部出来时产生的,对这一现象相关说法正确的是________.
A.磁铁从静止下落到穿过螺线管掉落到海绵垫上的过程中,线圈中的磁通量变化率先增大后减小
B.如果仅将滑动变阻器的滑片从中间向左移动,坐标系中的两个峰值都会减小
C.磁铁在穿过线圈过程中加速度始终小于重力加速度g
D.如果仅略减小h,两个峰值都会减小
(3)在磁铁下降h的过程中,可估算由机械能转化的电能的大小约为________J.
14.图甲为“探究电磁感应现象”实验中所用器材的示意图。现将电池组、滑动变阻器、带铁芯的线圈A、B、电流计及开关连接成如图所示的电路。
(1)开关闭合一段时间后,下列说法中正确的是___________。
A.只要将线圈A放在线圈B中就会引起电流计指针偏转
B.线圈A插入或拔出线圈B的速度越大,电流计指针偏转的角度越大
C.滑动变阻器的滑片P匀速滑动时,电流计指针不会发生偏转
D.滑动变阻器的滑片P滑动越快,电流计指针偏转的角度越大
(2)在实验中,如果线圈A置于线圈B中不动,因某种原因,电流计指针发生了偏转。这时,线圈B相当于产生感应电流的“电源”这个“电源”内的非静电力是___________。如果是因为线圈A插入或拔出线圈B,导致电流计指针发生了偏转。这时,是___________转化为电能。
(3)上述实验中,线圈A可等效为一个条形磁铁,将线圈B和灵敏电流计简化如图乙所示。当电流从正接线柱流入灵敏电流计时,指针向负接线柱一侧偏转。则乙图中灵敏电流计指针向其___________接线柱方向偏转(填“正”或“负”)。
四、解答题
15.如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上。质量为m=0.2kg的金属杆ab水平放置在轨道上,其接入电路的阻值为r,现从静止释放杆ab,测得最大速度为vm,改变电阻箱的阻值R,得到vm与R的关系如图乙所示。已知MN、PQ两平行金属轨道间距离为L=1m,重力加速度g取10m/s2,轨道足够长且电阻不计。求:
(1)金属杆ab运动过程中所受安培力的最大值;
(2)磁感应强度B的大小和r的阻值;
16.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度。两导轨间距为,轨道足够长,电阻不计。金属棒和的质量分别为,,电阻分别为,。棒静止于轨道水平部分,现将棒从高处自静止沿弧形轨道下滑,通过点进入轨道的水平部分,已知两棒在运动过程中始终保持与导轨垂直且接触良好,两棒始终不相碰,。求:
(1)棒刚进入磁场时,棒的加速度;
(2)从棒进入磁场到两棒共速的过程中,流过棒的电荷量;
(3)从棒进入磁场到两棒共速的过程中,棒中产生的焦耳热。
17.如图所示,光滑水平面上放有质量=0.06kg的U型导体框,其电阻忽略不计,一质量=0.02kg、电阻=3Ω的金属棒CD置于导体框上,与导体框构成矩形回路CDPQ,PQ长度=0.6m。初始时CD与PQ相距=0.4m。导体框受到水平恒力=0.48N作用,和金属棒一起以相同的加速度由静止开始向右运动,金属棒运动距离m后进入一方向竖直向上的匀强磁场区域,磁场边界(图中虚线)与导体棒平行。金属棒在磁场中做匀速运动,直至离开磁场区域。当金属棒离开磁场的瞬间,导体框的PQ边正好进入磁场。已知金属棒与导体框之间始终接触良好,磁感应强度大小=1T,重力加速度取=10m/s2。
(1)求金属棒进入磁场时的速度大小;
(2)求金属棒在磁场中与导体框的摩擦力大小;
(3)证明导体框PQ边进入磁场后做匀速运动,并求它保持匀速运动所通过的距离。
18.如图所示,两个光滑金属导轨和平行,间距,与水平面之间的夹角,匀强磁场磁感应强度,方向垂直于导轨平面向上,间接有阻值的电阻,质量、电阻的金属杆垂直导轨放置,导轨足够长,,g取。求:
(1)把金属杆由静止释放经过时间1s,金属杆下滑达到最大速度,最大速度为多少?其过程杆下滑的距离?
(2)现用恒力F沿导轨平面向上拉金属杆,使其由静止开始运动,当金属杆上滑的位移时达到稳定速度,其速度为,恒力F为多少?其过程杆中产生的焦耳热为多少?
试卷第1页,共3页
试卷第11页,共1页
参考答案:
1.D
2.D
3.C
4.B
5.D
6.D
7.B
8.C
9.AC
10.AD
11.CD
12.BC
13. 0.9 BD (~均正确)
14. BD 感应电场的电场力 机械能 正
15.(1)1N;(2)1T;2Ω
16.(1),方向向右;(2);(3)
17.(1) 1.5m/s;(2)0.18N;(3)
18.(1),;(2),