6.4三角形的中位线定理
一、教学目标设计:
运用多媒体辅助教学技术创设良好的学习环境,激发学生的学生积极性,向学生提供充分从事数学活动的机会,引导学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想方法,逐步提高自主建构的能力,培养勇于探索的精神,切实提高课堂效率
1、认知目标
(1)知道三角形中位线的概念,明确三角形中位线与中线的不同。
(2)理解三角形中位线定理,并能运用它进行有关的论证和计算。
(3)通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力.
2、能力目标
引导学生通过观察、实验、联想来发现三角形中位线的性质,培养学生观察问题、分析问题和解决问题的能力。
3、德育目标
对学生进行事物之间相互转化的辩证的观点的教育。
4、情感目标
利用制作的PPT课件,创设问题情景,激发学生的热情和兴趣,激活学生思维。
二、本课内容的重点、难点分析:
本节课的内容是三角形中位线定理及其应用,这堂课起到了承上启下的作用
【重点】:三角形中位线定理
【难点】:难点是证明三角形中位线性质定理时辅助线的添法和性质的灵活应用.
三、学情分析:
初二学生已初步具备一定的分析思维能力,但还远未达到成熟阶段。因而新授时可在教师适当的引导之下,借助一些现代化教育辅助手段,调动学生思维的积极性,激发学生内在的思维潜力,从而做到教与学的充分和谐。
四、教学准备:
【策略】
课堂组织策略:组织学生复习旧知识,联系实际,创设问题情景,逐层展开,传授新知识,并精心设计例题、练习、达到巩固知识的目的。
学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下,通过观察、归纳、抽象、概括等手段,获取知识。
辅助策略:借助“Powerpoint”平台,向学生展示动感几何,化抽象为形象,帮助学生解决学习过程中所遇难题,提高学习效率。
【教法学法】
本节课以“问题情境——建立模型——巩固训练——拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。
利用制作的多媒体课件,让学生通过课件进行探究活动,使他们直观、具体、形象地感知知识,进而达到化解难点、突破重点的目的。
教给学生良好的学习方法比直接教给学生知识更重要。数学教学是师生之间、学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在要不断指导学生学会学习。本节课先从学生实际出发,创设有助于学生探索思考的问题情景,引导学生自己积极思考探索,经历“观察、发现、归纳”的过程,以此发展学生思维能力的独立性与创造性,使学生真正成为学习的主体。
【主要创意思路】:
1、用实例引入新课,培养学生应用数学的意识;
2、鼓励学生大胆猜想,用观察、测量等方法来突破重点、化解难点;
3、以学生为主体,应用启发式教学,调动学生的积极性;
4、利用变式练习和开放型练习代替传统练习,启迪学生的思维、开阔学生视野;
5、通过多媒体教学,揭示几何知识间的内在联系及概念本质属性。
五、教学过程
(一)联想,提出问题.
1.怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?
操作:(1)剪一个三角形,记为△ABC
(2)分别取AB,AC中点D,E,连接DE
(3)沿DE将△ABC剪成两部分,并将△ABC绕点E旋转180°,得四边形BCFD
2、思考:四边形ABCD是平行四边形吗?
3、探索新结论:若四边形ABCD是平行四边形,那么DE与BC有什么位置和数量关系呢?启发学生逆向类比猜想:DE∥BC,DE=BC.
由此引出课题.
(二)引入三角形中位线的定义和性质
1、定义三角形的中位线,强调它与三角形的中线的区别.
2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半
(三)应用举例
1、A、B两点被池塘隔开,如何才能知道它们之间的距离呢?
在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN = 20m,那么A、B两点的距离是多少?为什么?
2、已知:三角形的各边分别为6cm,8cm, 10cm,则连结各边中点所成三角形的周长为 cm,面积为 cm2,为原三角形面积的 。
3、已知:△ABC三边长分别为a,b,c,它的三条中位线组成△DEF,△DEF的三条中位线又组成△HPN,则△HPN的周长等于 ,为△ABC周长的 , 面积为△ABC面积的 ,
4、如图,AF=FD=DB,FG∥DE∥BC,PE=1.5,则DP= ,BC= .
1、例题:
已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图.求证:四边形EFGH是平行四边形.
分析:
已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位线”的基本图形.
2、让学生画图观察并思考此题的特殊情况,如图,顺次连结各种特殊四边形中点得到什么图形?
投影显示:
3、练习:
①次连结平行四边形四边中点所得的四边形是_________.
②顺次连结等腰梯形四边中点所得的四边形是 .
③顺次连结矩形四边中点所得的四边形是 .
④顺次连结菱形四边中点所得的四边形是 .
⑤顺次连结正方形四边中点所得的四边形是 .
(四)师生共同小结
1、教师提问引起学生思考:
(1)这节课学习了哪些具体内容:
(2)用什么思维方法提出猜想的?
(3)应注意哪些概念之间的区别?
2、在学生回答的基础上,教师投影显示以下与三角形一边中点及线段倍分关系有关的基本图形(如图).
(1)注意三角形中线与中位线的区别,图(a),(b).
(2)三角线的中位线的判定方法有两种:定义及判定定理,图(b)(c).
(3)证明线段倍分关系的方法常有三种,图(b),(d),(e).
3、添辅助线构造基本图形来使用性质的解题方法.
4、三角形的中位线有这样的性质,那么梯形有中位线吗?它有类似的性质吗?(为下节课作思维上的准备)
(五)作业布置
顺次连接什么样的四边形各边中点连线得到的四边形是矩形?菱形?正方形?
六、教学反思
1、本教学过程设计需1课时完成.
2、本节课的设计,力求让学生通过逆向思维及类比联想自己实践“分析——猜想——证明”的过程.变被动接受知识为主动应用已有知识,探索新知识,获得成功的喜悦
1 / 5