2021-2022学年人教版七年级数学下册 第八章 二元一次方程组
8.3 实际问题与二元一次方程组(数字问题、和差倍分问题) 课后练习
一、选择题
1.把一张50元的人民币换成10元或5元的人民币,共有
A.4种换法 B.5种换法 C.6种换法 D.7种换法
2.一个两位数的个位数字与十位数字的和为14,若调换个位数字与十位数字,所得的新数比原数小36,则这个两位数是( )
A.86 B.95 C.59 D.68
3.一个两位数,十位上的数字与个位上的数字的和是7,若十位上的数字与个位上的数字对换,现在的两位数与原来的两位数的差是9,则现在的两位数是( )
A.43 B.34 C.25 D.52
4.小明的外婆送来满满一篮鸡蛋,这只篮子最多只能装55只鸡蛋,小明3只一数,结果剩下1只,但忘了数了多少次,只好重数,他5只一数剩下2只,可又忘了数了多少次.他准备再数时,妈妈笑着说“不用数了,共有( )只.
A.54 B.52 C.48 D.50
5.有一个两位数,其值等于十位数字与个位数字之和的4倍,其十位数字比个位数字小2.设这个两位数的十位数字为x,个位数字为y,则列出的方程组为( )
A. B. C. D.
6.嘉祥县是鲁西黄牛、小尾寒羊的国家育种基地县,全县生年畜牧业产值高达亿元.黄垓镇某养牛场原有头大牛和头小牛,天约用饲料;天后又购进头大牛和头小牛,这时天约用饲料.下列说法中,错误的是( )
A.每头大牛天约用饲料 B.头大牛和头小牛天约用饲料
C.头大牛和头小牛天约用饲料 D.头大牛和头小牛天用饲料
7.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为,此时木桶中水的深度是( ).
A.50 B.40 C.30 D.20
8.某农户,养的鸡和兔一共80只,已知鸡和兔的腿数之和为230条,则鸡的只数比兔多多少只( )
A.14只 B.10只 C.8只 D.以上都不对
9.用绳子测量水井的深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺,绳长、井深各是多少尺?( ).
A.48 11 B.11 48 C.12 47 D.13 46
10.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x人,女孩有y人,则下列方程组正确的是( )
A. B. C. D.
二、填空题
11.已知与互为补角,且的比大,则的余角等于_______.
12.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.
13.某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有_________名.
14.以下是甲、乙两人关于一个两位数的对话:甲说两个数位上的数字和是12,乙说两个数位上的数字差是2.那么这个两位数是______.
15.一个两位数十位上的数字与个位上的数学之和为6,如果把这个两位数的个位与十位数字对调,得到新的两位数比原来的两位数大18,则原来的两位数是_________.
三、解答题
16.甲仓库存粮比乙仓库存粮少5吨,现从甲仓库运出存粮30吨,从乙仓库运出存粮的40%,这时乙仓库所余粮食是甲仓库所余粮食的2倍,问甲、乙两仓库原各存粮多少吨?
17.对于任意一个四位正整数m,若满足百位数字比千位数字大1,个位数字比十位数字大1,且各个数位上的数字不为零,我们就把这个数叫作“虎虎生威数”,将“虎虎生威数”m的千位、个位上的数字交换位置,百位、十位上的数字也交换位置,得到一个新的数,记.
(1)最小的虎虎生威数是______;______;
(2)已知p,q都是虎虎生威数,其中,(,:且均为整数),若,且满足是11的倍数,求p、q的值.
18.为缓解电力供需矛盾,促进能源绿色低碳发展,某市推行峰谷分时电价政策.峰谷分时电价为:峰时(8:00~22:00)每度电0.55元,谷时(22:00~次日8:00)每度电0.3元.小颖家10月份用电120度,缴纳电费61元.
(1)求小颖家10月份,峰时、谷时各用电多少度?
(2)为响应节电政策,小颖11月份计划将20%的峰时用电转移至谷时,这样在她用电量保持不变的情况下能节省电费多少元?
19.某公司准备安装完成5820辆的共享单车投入市场.由于抽调不出足够的熟练工人,公司准备招聘一批新工人.生产开始后发现:1名熟练工人和3名新工人每天共安装36辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.
(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?
(2)若公司原有熟练工人,现招聘名新工人(),使得最后能刚好一个月(30天)完成安装任务,已知工人们安装的共享单车中不能正常投入运营的占3%,求的值.
20.某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗40棵,B种树苗15棵,共花费1750元;第二次购进A种树苗20棵,B种树苗6棵,共花费860元.(两次购进的A,B两种树苗各自的单价均不变)
(1)A,B两种树苗每棵的价格分别是多少元?
(2)因受季节影响,A种树苗价格下降10%,B种树苗价格上升20%,计划购进A种树苗25棵,B种树苗20棵,问总费用是多少元?
21.若一个三位数满足十位数字等于百位数字的平方减去个位数字的平方,则称这个数是“平方差数”;若十位数字等于百位数字与个位数字的和,则称这个数是“和数”
例如:381是“平方差数”,因为;483不是“平方差数”,因为.275是“和数”,因为;563不是“和数”,因为.
(1)若一个“平方差数”的十位数字为5,则这个数是_______;若一个“和数”的十位数字为9;则这个数可能是________(写一个即可).
(2)若一个“平方差数”与一个“和数”的百位数字相同,个位数字也相同,且这个“平方差数”比“和数”小60,求满足条件的“和数”
22.若m是一个两位数,与它相邻的11的整数倍的数为它的“邻居数”,与它最接近的“邻居数”为“最佳邻居数”,m的“最佳邻居数”记作n,令;
若m为一个三位数,它的“邻居数”则为111的整数倍,依次类推.
例如:50的“邻居数”为44与55,,,
∵,∴55为50的“最佳邻居数”,∴,
再如:492的“邻居数”为444和555,,,
∵,∴444是492的“最佳邻居数”.
(1)求和的值;
(2)若p为一个两位数,十位数字为a,个位数字为b,且.求p的值.
23.阅读:一个两位数,若它刚好等于它各位数字之和的整数倍,我们称这个两位数为本原数;把一个本原数的十位数字、个位数字交换后得到一个新的两位数,我们称这个新的两位数为本原数的奇异数.
(1)一本原数刚好是组成它的两个数字之和的4倍.请写出符合条件的所有本原数;
(2)一本原数刚好等于组成它的数字之和的3倍,它的奇异数刚好是两个数字之和的k倍.请问k的值是多少?
(3)一个本原数刚好等于组成它的数字之和的m倍,它的奇异数刚好是这个数的数字之和的n倍,试说明m和n的关系.
【参考答案】
1.C 2.B 3.A 4.B 5.B 6.D 7.D 8.B 9.A 10.C
11.
12.7
13.23
14.57或75
15.24
16.甲仓库原来存粮45吨,乙仓库原来存粮50吨
17.(1)1212,4
(2),
18.(1)小颖家10月份峰时用电100度,谷时用电20度
(2)在她用电量保持不变的情况下能节省电费5元.
19.(1)每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车;(2)n的值为1或4或7.
20.(1)A种树苗每棵的价格40元,B种树苗每棵的价格10元;(2)总费用需1140元.
21.(1),;(2)363
22.(1),
(2)p的值为81.
23.(1)12,24,36,48;
(2)
(3)