2.5 一元一次不等式与一次函数的关系 第1课时 课件(共23张PPT)+第2课时 课件(共20张PPT)

文档属性

名称 2.5 一元一次不等式与一次函数的关系 第1课时 课件(共23张PPT)+第2课时 课件(共20张PPT)
格式 zip
文件大小 5.3MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2022-03-24 16:37:41

文档简介

(共23张PPT)
2022年春北师大版版数学
八年级下册数学精品课件
2.5 一元一次不等式与一次函数
第1课时 一元一次不等式与一次函数的关系
1.体会一元一次不等式与一次函数的内在联系;
2.利用不等式与函数的关系解决简单的实际问题,
初步体验数形结合思想.(重点、难点)
2.一次函数的图象是__________.它与x轴的交点坐标是 ,与y轴的交点坐标是 ;要作一次函数的图象,只需_______点即可.
3. 一次函数 y = 2x – 5它与x轴的交点坐标是 ,与y轴的交点 坐标是 .
复习引入
一条直线
(0,b)

(0,-5)
1.解不等式2x-5>0.
下面我们来探讨一下一元一次不等式与一次函数之间的关系.
合作探究
作出一次函数y=2x-5的图象
O
1
2
3
4
5
-2
-1
x
2
3
1
4
-3
-5
-2
-4
y
-1
y=2x-5
x … 0 2.5 …
y=2x-5 … -5 0 …
一、一元一次不等式与一次函数
观察图象回答下列问题:
(1)x取何值时, 2x-5=0
∴ x=2.5, 2x-5=0
0
1
2
3
4
5
-2
-1
x
2
-1
3
1
4
-3
-5
-2
-4
y
y=2x-5
(2.5,0)
分析:
y=0
(2)x取哪些值时, 2x-5>0
∴ x>2.5, 2x-5>0
0
1
2
3
4
5
-2
-1
x
2
-1
3
1
4
-3
-5
-2
-4
y
y=2x-5
(2.5,0)
分析:
y>0
(3)x取哪些值时, 2x-5<0
∴ x<2.5, 2x-5<0
0
1
2
3
4
5
-2
-1
x
2
-1
3
1
4
-3
-5
-2
-4
y
y=2x-5
(2.5,0)
分析:
y<0
(4)x取哪些值时, 2x-5>3
∴ x>4, 2x-5>3
0
1
2
3
4
5
-2
-1
x
2
-1
3
1
4
-3
-5
-2
-4
y
y=2x-5
分析:
y=3
概括总结
通过对图象的观察、分析,得:
我们既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者相互渗透,互相作用.不等式与函数是紧密联系着的一个整体.
想一想:如果y=-2x-5,那么当x取何值时, y>0
0
-3
-2
-1
1
2
-5
-4
x
2
-1
3
1
4
-3
-5
-2
-4
y
y=-2x-5
思路二:
将函数问题转化为不等式问题.
即 解不等式-2x-5 >0
∴当x<-2.5时, y>0.
思路一:
运用函数图象解不等式.
由图象可得
当x<-2.5时, y>0.
(-2.5,0)
作一次函数y=-2x-5的图象
典例精析
例1:兄弟俩赛跑,哥哥先让弟弟跑9m,然后自已才开始跑,已知弟弟每秒跑3m,哥哥每秒跑4m.列出函数关系式,作出函数图象,观察图象回答下列问题:
(1)何时弟弟跑在哥哥前面
(2)何时哥哥跑在弟弟前面
(3)谁先跑过20m 谁先跑过100m
(4)你是怎样求解的 与同伴交流.
解:设哥哥起跑后所用的时间为x(s). 哥哥跑过的距离为y1(m)弟弟跑过的距离为y2(m).则哥哥与弟弟每人所跑的距离y(m)与时间x(s)之间的函数关系式分别是:
y1=4x
y2=3x+9
(1)_______________时,弟弟跑在哥哥前面.
(2)__________时,哥哥跑在弟弟前面.
(3)______先跑过20m.______先跑过100m.
思路一:图象法
0(s)x>9(s)
y1=4x
y2=3x+9
(9,36)
0
6
8
10
2
x(s)
4
12
24
12
30
18
36
6
y(m)
42
48
弟弟
哥哥
思路二:代数法
哥哥: y1=4x
弟弟: y2=3x+9
(1)何时弟弟跑在哥哥前面
(2)何时哥哥跑在弟弟前面
(3)谁先跑过20m 谁先跑过100m
4x<3x+9
x<9
4x>3x+9
x>9
4x=20
3x+9=20
x=5
4x=100
3x+9=100
x=25
∴弟弟先跑过20m
∴哥哥先跑过100m
-2
x
y=3x+6
y
例2 根据下列一次函数的图像,直接写出下列不等式的解集.
(1)3x+6>0
(3) –x+3 ≥0
x
y
3
y=-x+3
(2)3x+6 ≤0
x>-2
(4) –x+3<0
x≤3
x≤-2
x>3
(即y>0)
(即y≤0)
(即y<0)
(即y≥0)
概括总结
求ax+b>0(或<0)(a, b
是常数,a≠0)的解集
函数y= ax+b的函数值
大于0(或小于0)时x
的取值范围
直线y= ax+b在x轴上方或
下方时自变量的取值范围
从数的角度看
从形的角度看
求ax+b>0(或<0)(a, b
是常数,a≠0)的解集
1.利用y= 的图像,直接写出:
y
2
5
x
y= x+5
x=2
x<2
x>2
x<0
(即y=0)
(即y>0)
(即y<0)
(即y>5)
因此,当 时,y1>y2.
2.已知y1=-x+3, y2=3x-4,当x取何值时y1>y2你是怎样做的 与同伴交流.
解:根据题意,得
-x+3> 3x-4,
解得
3.甲、乙两辆摩托车从相距20km的A、B两地相向而行,
图中l1、l2分别表示两辆摩托车离开A地的距离s(km)
与行驶时间t(h)之间函数关系.
(1)哪辆摩托车的速度较快?
(2)经过多长时间,甲车行驶
到A、B两地中点?
解答:(1)从图象中可知
故摩托车乙速度快.
(2)当s=10km时,
即经过0.3h时,甲车行驶到A、B两地的中点.
一元一次不等式
一次函数
可以研究一次函数的图象走向
通过图象可直接解答不等式
https://www.21cnjy.com/help/help_extract.php(共20张PPT)
2022年春北师大版版数学
八年级下册数学精品课件
2.5 一元一次不等式与一次函数
第2课时 一元一次不等式与一次函数的
综合应用
1.利用一次函数、一元一次不等式及一元一次方程这
三者之间的关系解决生活中的实际问题.(重点、难点)
2.运用数形结合思想方便快捷解决问题.
跳楼价
清仓处理
满200返160
5折酬宾
情境引入
思考:现实生活中,同种商品总是有各种优惠活动,我们该如何选择,才能使利润最大化呢?
例1:某电信公司有甲、乙两种手机收费业务.甲种业务规定月租费10元,每通话1分钟收费0.3 元;乙种业务不收月租费,但每通话1分钟收费0.4 元.你认为何时选择甲种业务对顾客更合算?何时选择乙种业务对顾客更合算?
解:设顾客每月通话时长为x 分钟,那么甲种业务每个月的消费额为y1,乙种业务每个月的消费额为y2,根据题意可知
y1=10+0.3x y2=0.4x
一、一元一次不等式与一次函数的综合应用
当甲乙两种业务消费额 一样时,
即y1= y2,得10+0.3x=0.4x,解得x=100;
当甲乙两种业务消费额不一样时,
①由y1>y2,得10+0.3x>0.4x,解得x<100;
此时选择乙种业务比较合算.
②由y1100.
此时选择甲种业务比较合算.
所以当顾客每个月的通话时长等于100 min时,选择甲乙两种业务一样合算;
如果通话时长大于100 分钟,选择甲种业务比较合算;
如果通话时长小于100 分钟,选择乙种业务比较合算.
例2:某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商:甲:每位游客七五折优惠;乙:先免去一位游客的旅游费用,其余游客八折优惠.该选择哪一家旅行社呢?
由y1 = y2, 得150x=160x-160,解得x=16
由y1 > y2, 得150x>160x-160,解得x<16
由y1 < y2, 得150x<160x-160,解得x>16
因为参加旅游的人数为10~25人,所以:
当x=16时,y1=y2 甲、乙两家旅行社的收费相同;
当16当10≤x<16时,y1>y2,选择乙旅行社费用较少.
解:设该单位参加这次旅游的人数是x人,选择甲旅行社时,所需的费用为y1元,选择乙旅行社时,所需的费用为y2元,则:
y1 = 200×0.75x, 即y1 = 150x
y2 = 200×0.8(x-1), 即y2= 160x-160
概括总结
方案选择问题解题思路:
(1)根据题意分别写出方案A、B的函数解析式yA、yB;
(2)将方案A、B进行比较:①yA>yB , ②yA(3)根据实际情况选择方案.
讲授新课
例3:某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.
(1)甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%.那么商场的收费y1(元)与所买电脑台数x之间的关系式是:
(2)乙商场的优惠条件是:每台优惠20%.那么乙商场的收费 y2(元)与所买电脑台数x之间的关系式是:
(1) 什么情况下到甲商场购买更优惠
(2) 什么情况下到乙商场购买更优惠
(3) 什么情况下两家商场的收费相同
令y1所以,当购买电脑台数超过5时,到甲商场购买更优惠.
令y1>y2,得x<5.
所以,当购买电脑台数小于5时,到乙商场购买更优惠.
令y1=y2,得x=5.
所以,当购买电脑台数等于5时,两商场收费相同.
解决实际问题步骤:
(1)理清题目中的数量关系,把这些数量关系分解 为几个函数关系;
(2)列出这些函数关系式;
(3)根据题意,将列出的函数关系式转化为不等式;
(4)解不等式;
(5)选择符合题意的不等式的解集.
概括总结
做一做
直线l1:y1=kx+b与直线l2:y2=x+a在同一平面直角坐标系中的图象如图所示,则关于kx+b>x+a的不等式的解为( )
A. x>3 B. x<3
C. x=3 D. 无法确定
x
y
【解析】从图象可以知道两条直线的交点的横坐标为3,通过观察发现 x<3时, kx+b>x+a.故选B.
B
1.如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是( )
A.x<1 B.x>1
C.x<3 D.x>3
C
2.某地电话拨号入网有两种收费方式,用户可以任选其一:
(A)计时制:0.05元/分;
(B) 包月制:50元/月(限一部个人住宅电网).
此外,每一种上网方式都得加收通信费0.02元/分.
(1)请你分别写出两种收费方式下用户每月应支付的费用y(元)与上网时间x(小时)之间的函数关系式;
(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?
解: ⑴ 依题意得,计时制:

包月制:

⑵ 当时
计时制: (元)
包月制: (元)
所以,若某用户估计一个月上网20小时,采用包月制
较为合适
3.某公司40名员工到一景点集体参观,该景点规定满40人可以购买团体票,票价打八折。这天恰逢妇女节,该景点做活动,女士票价打五折,但不能同时享受两种优惠.请你帮助他们选择购票方案.
解:设该公司参观者中有女士x人,票价为1,选择购买女士五折票时所需费用为y1元,选择购买团体票时所需费用为y2元,则
由y1 = y2,得0.5x+40-x=40×0.8,解得x=16
由y1 > y2,得0.5x+40-x>40×0.8 ,解得x<16
由y1 < y2,得0.5x+40-x<40×0.8 ,解得x>16
答:当女士不足16人时,购买团体票合算;当女士恰好是16人时,两种方案所需费用相同;当女士多于16人时,购买女士五折票合算.
一元一次不等式与一次函数在决策型应用题中的应用
实际问题
写出两个函数表达式
不等式
解不等式
画出图象
分析图象
解决问题
https://www.21cnjy.com/help/help_extract.php