(共21张PPT)
2022年春北师大版版数学
八年级下册数学精品课件
2.3 不等式的解集
第二章 一元一次不等式与
一元一次不等式组
1.理解不等式的解、解集和解不等式的概念;
2.准确掌握不等式的解集在数轴上的表示方法,能正确地在数轴上表示出不等式的解集.(重点、难点)
观察与思考
思考:我们在燃放烟花时,为了确保安全,我们需要注意哪些呢?
在安全距离、引火线的燃烧速度和燃放着离开的速度为一定时,还应注意引火线的长度,那引火线究竟需要多长呢?这节课我们一起讨论一下吧!
合作探究
问题:燃放某种烟花时,为了确保安全,燃放者在点燃引火线后要在燃放前转移到10m以外的安全区域.已知引火线的燃烧速度为0.02m/s,燃放者离开的速度为4m/s,那么引火线的长度应满足什么条件?
解:设引火线的长度为xcm,根据题意,得
所以,引火线的长度应大于5cm.
根据不等式的基本性质,得x>5.
一、不等式的解集的概念
想一想
你还能找出一些使不等式x>5成立的x的值吗
下列各数中,哪些能使不等式x>5成立?
3, 4, 5, 6, 7.2, 8.5, 9.
有( ) 个.
无数
一个含有未知数的不等式的所有解,组成这个不等式的解的解集,简称为这个不等式的解集.
求不等式的解集的过程,叫做解不等式.
不等式的解集必须满足两个条件:
1.解集中的任何一个数值都使不等式成立;
2.解集外的任何一个数值都不能使不等式成立.
概括总结
能使不等式成立的未知数的值,叫做不等式的解.
概念区分
不等式的解 不等式的解集
区别
定义
特点
形式
联系
满足一个不等式的未知数的某个值
满足一个不等式的未知数的所有值
个体
全体
如:x=3是2x-3<7的一个解
如:x<5是2x-3<7的解集
某个解定是解集中的一员
解集一定包括了某个解
不等式的解与不等式的解集的区别与联系
练一练
1.判断下列说法是否正确?
(1) x=2是不等式x+3<4的解; ( )
(2) 不等式x+1<2的解有无穷多个; ( )
(3) x=3是不等式3x<9的解 ( )
(4) x=2是不等式3x<7的解集; ( )
√
×
×
×
先在数轴上标出表示2的点A
则点A右边所有的点表示的数都大于2,而点A左边所有的点表示的数都小于2
因此可以像图那样表示不等式的解集x>2.
问题1 如何在数轴上表示出不等式x>2的解集呢?
0
1
2
3
4
5
6
-1
A
把表示2 的点A 画成空心圆圈,表示解集不包括2.
二、在数轴上表示不等式的解集
画一画: 利用数轴来表示下列不等式的解集.
(1) x>-1 (2) x<
0
-1
0
1
用数轴表示不等式的解集,应记住下面的规律:
大于向右画,小于向左画;
>,<画空心圆.
问题2 在数轴上表示x ≤ 5的解集.
-1
0
1
2
3
4
5
6
解集x≤5中包含5,所以在数轴上将表示5的点画成实心圆点.
符号“≤”表示“小于等于”,“≥”表示“大于等于”.
归纳总结
用数轴表示不等式解集的方法:
(1)画数轴;
(2)定边界点:若这个点包含于解集之中,则用实心点表示;不包含在解集中,则用空心点表示.
(3)定方向:相对于边界点,大于向右画,小于向左画.
解:由方程的定义,把x=3代入ax+12=0中,
得 a=-4.
把a=-4代入(a+2)x>-6中,
得-2x>-6,
解得x<3.
在数轴上表示如图:
其中正整数解有1和2.
典例精析
例1:已知方程ax+12=0的解是x=3,求关于x不等式(a+2)x>-6的解集,并在数轴上表示出来,其中正整数解有哪些?
-1
0
1
2
3
4
5
6
1. 不等式x>-2与x ≥-2的解集有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.
2. 用不等式表示图中所示的解集.
x<2
x≤2
x≥ -7.5
3. a≥1的最小正整数解是m,b≤8的最大正整数解是n,求关于x的不等式(m+n)x>18的解集.
∴m+n=9
解:∵a≥1的最小正整数解是m,∴m=1.
∵b≤8的最大正整数解是n,∴n=8.
把m+n=9代入不等式(m+n)x>18中,
得 9x>18,
解得x>2.
不等式的解集
不等式解集的表示
↑
https://www.21cnjy.com/help/help_extract.php