20.5二次函数的应用(一)
学习目标:会结合二次函数的图象分析问题、解决问题,在运用中体会二次函数的实际意义
重点:会根据不同的条件,利用待定系数法求二次函数的函数关系式
难点:在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的实际问题。
学习过程:
一、 情景创设
生活中,我们常会遇到与二次函数及其图象有关的问题,比如在2004雅典奥运会的赛场上,很多项目,如跳水、铅球、篮球、足球、排球等都与二次函数及其图象息息相关.你知道二次函数在生活中的其它方面的运用吗?
二、 实践与探索
例1.如图26.3.1,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是 ,问此运动员把铅球推出多远?
探索 此题根据已知条件求出了运动员把铅球推出的实际距离,如果创设另外一个问题情境:一个运动员推铅球,铅球刚出手时离地面 m,铅球落地点距铅球刚出手时相应的地面上的点10m,铅球运行中最高点离地面3m,已知铅球走过的路线是抛物线,求它的函数关系式.你能解决吗?试一试.
例2.如图26.3.2,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.
(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?
(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流最大高度应达多少米?(精确到0.1m)
分析: 这是一个运用抛物线的有关知识解决实际问题的应用题,首先必须将水流抛物线放在直角坐标系中,如图26.3.3,我们可以求出抛物线的函数关系式,再利用抛物线的性质即可解决问题.
三、小结
确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:
(1)一般式: ,给出三点坐标可利用此式来求.
(2)顶点式:,给出两点,且其中一点为顶点时可利用此式来求.
四、课堂检测(我会)
在一场篮球赛中,队员甲跳起投篮,当球出手时离地高2.5米,与球圈中心的水平距离为7米,当球出手水平距离为4米时到达最大高度4米.设篮球运行轨迹为抛物线,球圈距地面3米,问此球是否投中?
五、课后反思
20.5二次函数的应用(二)
学习目标:进一步体验把实际问题转化为有关二次函数知识的过程.学会用数学的意识
重点:会根据不同的条件,利用二次函数解决生活中的实际问题
难点:在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的实际问题
学习过程
一、情景创设
二次函数的有关知识在经济生活中的应用更为广阔,我们来看这样一个生活中常见的问题:某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x米,面积为S平方米.请你设计一个方案,使获得的设计费最多,并求出这个费用.你能解决它吗?类似的问题,我们都可以通过建立二次函数的数学模型来解决.
二、实践与探索
例1.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。设销售单价为x元,日均获利为y元。
(1)求y关于x的二次函数关系式,并注明x的取值范围;
(2)将(1)中所求出的二次函数配方成 的形式,写出顶点坐标;在直角坐标系画出草图;观察图象,指出单价定为多少元时日均获利最多,是多少?
例2、某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:
X(十万元)
0
1
2
…
y
1
1.5
1.8
…
(1)求y与x的函数关系式;
(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的函数关系式;
(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?
三、小结
确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下两种形式:
(1)一般式: ,给出三点坐标可利用此式来求.
(2)顶点式: ,给出两点,且其中一点为顶点时可利用此式来求.
四、课堂检测
某旅社有客房120间,当每间房的日租金为50元时,每天都客满,旅社装修后,要提高租金,经市场调查,如果一间客房日租金增加5元,则客房每天出租数会减少6间,不考虑其他因素,旅社将每间客房日租金提高到多少元时,客房的总收入最大?比装修前客房日租金总收入增加多少元?
五、课后反思
20.5二次函数的应用(三)
学习目标:(1)会求出二次函数 与坐标轴的交点坐标;
(2)了解二次函数 与一元二次方程、一元二次不等式之间的关系.
重点:(1)会求出二次函数 与坐标轴的交点坐标;
(2)了解二次函数 与一元二次方程、一元二次不等式之间的关系.
难点:了解二次函数 与一元二次方程、一元二次不等式之间的关系.
学习过程
一、情景创设
给出三个二次函数:(1) ;(2) ;(3) .它们的图象分别为
观察图象与x轴的交点个数,分别是 个、 个、 个.你知道图象与x轴的交点个数与什么有关吗?
另外,能否利用二次函数的图象寻找方程 ,不等式或 的解?
二、实践与探索
例1.画出函数的图象,根据图象回答下列问题.
(1)图象与x轴、y轴的交点坐标分别是什么?
(2)当x取何值时,y=0?这里x的取值与方程有什么关系?
(3)x取什么值时,函数值y大于0?x取什么值时,函数值y小于0?
回顾与反思
(1)二次函数图象与x轴的交点问题常通过一元二次方程的根的问题来解决;反过来,一元二次方程的根的问题,又常用二次函数的图象来解决.
(2)利用函数的图象能更好地求不等式的解集,先观察图象,找出抛物线与x轴的交点,再根据交点的坐标写出不等式的解集.
例2.
(1)已知抛物线,当k= 时,抛物线与x轴相交于两点.
(2)已知二次函数的图象的最低点在x轴上,则a= .
(3)已知抛物线与x轴交于两点A(α,0),B(β,0),且 ,则k的值是 .
例3.已知二次函数 ,
(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点;
(2)m为何值时,这两个交点都在原点的左侧?
(3)m为何值时,这个二次函数的图象的对称轴是y轴?
三、课堂检测
1.函数(m是常数)的图象与x轴的交点有( )
A.0个 B.1个 C.2个 D.1个或2个
2.已知二次函数 .
(1)说明抛物线 与x轴有两个不同交点;
(2)求这两个交点间的距离(关于a的表达式);
(3)a取何值时,两点间的距离最小?
四、课后反思