人教版九年级数学下册第二十九章-投影与视图定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,该几何体的俯视图是( )
A. B.
C. D.
2、如图为某几何体的三视图,则该几何体是( )
A.圆锥 B.圆柱 C.三棱柱 D.四棱柱
3、如图所示的几何体的主视图为( )
A. B. C. D.
4、下列几何体中,俯视图为三角形的是( )
A. B. C. D.
5、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为( )
A.6 B.7 C.8 D.9
6、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,则最少需要小立方块的个数为( )
A.6 B.7 C.10 D.1
7、全运会颁奖台如图所示,它的主视图是( )
A. B. C. D.
8、某几何体从三个方向看到的平面图形都相同,这个几何体可以是( )
A. B.
C. D.
9、如图的几何体是由一些小正方体组合而成的,则这个几何体的左视图是( )
A. B.
C. D.
10、如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则2m﹣n=( )
A.10 B.11 C.12 D.13
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示是给出的几何体三个方向看到的形状,则这个几何体最多由_____个小正方体组成.
2、图2是图1中长方体的三视图,用S表示面积,S主=x2+2x,S左=x2+x,则S俯=___.
3、用小立方块搭成的几何体;从正面看到的图形和从上面看到的图形如下图,问搭成这样的几何体最多需要_____个小立方块,最少需要_____个小立方块.
4、一个正三棱柱的三视图如图所示,若这个正三棱柱的侧面积为12,则a的值___.
5、如图为一个长方体,则该几何体从左面看得到的图形的面积为__________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,由10个同样大小的小正方体搭成的几何体.
(1)请分别画出几何体从正面和从上面看到的形状图:
(2)设每个正方体的棱长为1,求出上图原几何体的表面积;
(3)如果从这个几何体上取出一个小正方体,在表面标上整数a、b、c、d、e、f,然后将其剪开展开成平面图形如图所示放置,已知正方体相对的面上的数互为相反数,若整数d是最大的负整数,正整数e的平方等于本身,整数f表示五棱柱的总棱数,求下列代数式的值.
2、如图,是由一些棱长为1cm的小正方体组成的简单几何体
(1)请直接写出该几何体的表面积(含下底面)为
(2)从正面看到的平面图形如图所示,请在下面方格中分别画出从左向右、从上向下看到的平面图形
3、如图是由5个同样大小的小正方体搭成的几何体,请在下面方格纸中分别画出这个几何体从正面看、从左面看、从上面看的形状图.
4、由5个相同的小正方体搭成的物体的俯视图如图所示,这个物体有几种搭法?
5、如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置,
(1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为 .
(2)请你在图中画出小亮站立AB处的影子.
---------参考答案-----------
一、单选题
1、A
【分析】
俯视图,从上面看到的平面图形,根据定义可得答案.
【详解】
解:从上面看这个几何体看到的是三个长方形,
所以俯视图是:
故选A
【点睛】
本题考查的是三视图,注意能看到的棱都要画成实线,掌握“三视图中的俯视图”是解本题的关键.
2、C
【分析】
根据三视图判断该几何体即可.
【详解】
解:根据该几何体的主视图与左视图均是矩形,主视图中还有一条棱,俯视图是三角形可以判断该几何体为三棱柱.
故选:C.
【点睛】
本题考查三视图,解题的关键是理解三视图的定义,属于中考常考题型.
3、A
【分析】
根据主视图是从物体的正面看得到的视图即可求解.
【详解】
解:主视图如下
故选:A.
【点睛】
本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提.
4、(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=错误,应该是a=6,b=11,a+b=17.
故选:B.
【点睛】
此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.
19.D
【分析】
从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.
【详解】
从上方朝下看只有D选项为三角形.
故选:D.
【点睛】
本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形.从视图反过来考虑几何体时,它有多种可能性.例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等.因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力.
5、B
【分析】
根据几何体的三视图特点解答即可.
【详解】
解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,
∴该几何体最少有4+2+1=7个小正方体组成,
故选:B.
【点睛】
本题考查几何体的三视图,掌握三视图的特点是解答的关键.
6、C
【分析】
从主视图和左视图考虑几何体的形状,从俯视图看出几何体的小立方块最少与最多的数目,利用口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”求解即可.
【详解】
解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.
由俯视图可知,它自左而右共有3列,第一列与第二列各3块,第三列1块,从空中俯视的块数只要最底层有一块即可.
因此,综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,其余为一层,第二列中有一个二层,其余为一层,第三列一层,共10块.
故选:C.
【点睛】
题目主要考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题关键.
7、C
【分析】
主视图是从前面先后看得到的图形,根据主视图对各选项一一分析即可.
【详解】
解:主视图是从前面先后看得到的图形,是C.
故选C.
【点睛】
本题考查主视图,掌握三视图的特征是解题关键.
8、C
【分析】
根据三视图判断即可;
【详解】
的左视图、主视图是三角形,俯视图是圆,故A不符合题意;
的左视图、主视图是长方形,俯视图是三角形,故B不符合题意;
的主视图、左视图、俯视图都是正方形,故C符合题意;
的左视图、主视图是长方形,俯视图是圆,故D不符合题意;
故选C.
【点睛】
本题主要考查了几何体三视图的判断,准确分析是解题的关键.
9、B
【分析】
根据左视图是从左面看得到的图形,可得答案.
【详解】
解:从左边看,上面一层是一个正方形,下面一层是两个正方形,
故选B
【点睛】
本题考查了简单组合体的三视图,从左面看得到的图形是左视图,掌握三视图的有关定义是解题的关键.
10、B
【分析】
根据几何体的主视图和俯视图,可得最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体.
【详解】
解:由三视图可知:最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体,
∴m=4+3+2=9,n=4+2+1=7,
∴2m﹣n=2×9﹣7=11.
故选B.
【点睛】
本题主要考查了三视图确定小立方体个数以及代数式求值,解题的关键在于能够熟练掌握根据三视图判断小立方体的个数.
二、填空题
1、10
【解析】
【分析】
从俯视图可知第一层有5个小正方体,从正视图和左视图可知第二层最多有5个,据此即可求得答案
【详解】
由俯视图可知第一层有5个小正方体,
由已知的正视图和左视图可知,第2层最多有5个小正方体,
故该几何体最多有5+5=10个
故答案为:10
【点睛】
考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.
2、x2+4x+3
【解析】
【分析】
由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.
【详解】
∵S主=x2+3x=x(x+3),S左=x2+x=x(x+1),
∴俯视图的长为x+3,宽为x+1,
则俯视图的面积S俯=(x+3)(x+1)=x2+4x+3,
故答案为:x2+4x+3.
【点睛】
本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.
3、 8 7
【解析】
【分析】
根据正面看与上面看的图形,得到俯视图中最左的一列都为3层,第2列都为2层,第3列为1层,进而即可求解.
【详解】
解:根据正面看与上面看的图形,得到俯视图中最左的一列都为3层,第2列都为2层,第3列为1层,得到最多共3+2+2+1=8个小正方体,最少需要3+2+1+1=7个小正方体;
故答案是:8;7.
【点睛】
本题考查几何体的三视图.由几何体的俯视图和主视图,准确想象出组合体的形状是解题的关键.
4、
【解析】
【分析】
观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,根据勾股定理可得底面边长为a,根据长方形的面积公式和这个正三棱柱的侧面积为12,可得关于a的方程,解方程即可求得a的值.
【详解】
解:观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,则底面边长为a,
依题意有a×2×3=12,
解得a=.
故答案为:.
【点睛】
此题考查了由三视图判断几何体,关键是由三视图得到正三棱柱的高和底面边长.
5、15
【解析】
【分析】
先判断出左视图的形状,再计算出面积即可.
【详解】
解:图中的几何体是长方体,左视图是长为5cm,宽为3cm的长方形,
由长方形的面积公式得长方形的面积为:(cm2),
故答案为:15.
【点睛】
此题考查了由几何体判断三视图,关键是根据从左面看到的形状图的相关数据得出长方形的面积.
三、解答题
1、(1)见解析;(2)38;(3)-1
【分析】
(1)由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,1,2;从左面看有3列,每列小正方形数目分别为3,2,1;据此可画出图形;
(2)分别得到各个方向看的正方形面数,相加后乘1个面的面积即可求解;
(3)根据已知条件得出d,e,f的值,再根据正方体相对面的特点得到a,b,c的值,从而代入化简.
【详解】
解:(1)如图所示:
(2)(1×1)×(6×2+6×2+6×2+2)
=1×38
=38.
故该几何体的表面积是38.
(3)∵整数d是最大的负整数,正整数e的平方等于本身,整数f表示五棱柱的总棱数,
∴d=-1,e=1,f=15,
由图可知:“a”与“d”相对,“b”与“f”相对,“c”与“e”相对,
∴a=1,b=-15,c=-1,
∴.
【点睛】
本题考查了几何体的三视图画法,正方体展开图,由立体图形可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.
2、(1)34 ;(2)见解析
【分析】
(1)先计算出每个小正方体一个面的面积,然后求出一共露在外面的面有多少个即可得到答案;
(2)根据三视图的画法作图即可.
【详解】
解:(1)∵每个小正方体的棱长为,
∴每个小正方体的一个面的面积为,
∵从上面看露在外面的小正方体的面有6个,从底面看露在外面的面有6个,从正面看,露在外面的面有6个,从后面看,露在外面的面有6个,从左面看,露在外面的面有4个,从右面看,露在外面的面有4个,然后在最下层,第二行第二列的小正方体右边1个面露在外面,第二行第四列的小正方体左边一个面露在外面,
∴露在外面的面一共有34个,
∴该几个体的表面积为,
故答案为:;
(2)如图所示,即为所求;
【点睛】
本题主要考查了简单几何体的表面积和画三视图,解题的关键在于能够熟练掌握相关知识进行求解.
3、见解析
【分析】
根据图形及三视图的定义作图即可.
【详解】
解:三视图如下所示:
【点睛】
此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键.
4、3种,见解析
【分析】
根据俯视图分析底层有三个小正方形,上层一个,还有一个小正方体有3种放置即可.
【详解】
解:∵从小正方体搭成的物体的俯视图如图所示,是从物体的上方向下看得到的图形,
∴从俯视图看,反映出两层,底层有3个小正方体,从前往后排,第一排两个,第二排一个,左对齐,上层有一个小正方体,在第一排中间偏右,
∵有5个小正方体,还有一个小正方体与其他底层三个小正方形重叠或与二层重叠,
底层从左边数第一排第一列不能重叠放置,上层小正方体不能固定,为此底层重叠放置有两种如图1,图2,与上层小正方体重叠一种图3,一共有3种搭法,
它们的立体图分别如图.
【点睛】
本题考查由俯视图画立体图形,利用俯视图确定底层有3个小正方体,上层有一个小正方体,另一正方体有3个位置放法是解题关键.
5、(1)变短;(2)见详解.
【分析】
(1)先选取B,O之间一点D,分别作出小亮的影子,比较代表影长的线段长度即可得出变化情况即可;
(2)连结线段PA,并延长交底面于点E,得到线段BE即可.
【详解】
解(1)在小亮由B处沿BO所在的方向行走到达O处的过程取点D,
通过灯光在B处小亮的影长为BE,当小亮走到D处时,小亮的影长为FD,
BE>FD,
∴小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短,
故答案为:变短;
(2)如图所示,连结PA,并延长交底面于E,则线段BD为求作小亮的影长.
【点睛】
本题考查投影知识,从远处向灯光处走去影长的变化,掌握影长变化规律,向灯光走近,影长变短,远离灯光,影长变长,先走近再走远先变短再变长是解题关键.