人教版九年级数学下册第二十九章-投影与视图专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,图形从三个方向看形状一样的是( )
A. B.
C. D.
2、如图所示的几何体的左视图是( )
A. B.
C. D.
3、如图,身高1.5米的小明(AB)在太阳光下的影子AG长1.8米,此时,立柱CD的影子一部分是落在地面的CE,一部分是落在墙EF上的EH.若量得米,米,则立柱CD的高为( ).
A.2.5m B.2.7m C.3m D.3.6m
4、如图,根据三视图,这个立体图形的名称是( )
A.三棱锥 B.三棱柱 C.四柱 D.四锥
5、如图是由6个完全相同的小正方体组成的立体图形,这个立体图形的三视图中( )
A.主视图和俯视图相同 B.主视图和左视图相同
C.俯视图和俯视图相同 D.三个视图都相同
6、下列物体的左视图是圆的为( )
A.足球 B. 水杯
C. 圣诞帽 D. 鱼缸
7、如图所示的支架(一种小零件)的两个台阶的高度相等,则它的左视图为( )
A. B.
C. D.
8、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为( )
A.6 B.7 C.8 D.9
9、如图所示的礼品盒的主视图是( )
A. B. C. D.
10、如图所示的几何体,它的左视图是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是______
2、一个正三棱柱的三视图如图所示,若这个正三棱柱的侧面积为12,则a的值___.
3、如图是由五个棱长均为1的正方体搭成的几何体,则它的左视图的面积为________.
4、一个直九棱柱底面的每条边长都等于3cm,侧边长都等于6cm,则它的侧面面积等于 ___cm2.
5、某立体图形的三视图中,主视图是矩形,请写出一个符合题意的立体图形名称:_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图是由几个相同的小立方块所搭几何体的俯视图(从上面往下观察几何体所看到的形状),小正方形中的数字表示在该位置小立方块的个数.
请解答下列问题:
(1)从正面、左面观察该几何体,分别画出你所看到的图形;
(2)若小立方块的棱长为2,则从正面观察该几何体时,你所看到的形状的面积是 .
2、从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.
3、画出图中几何体的主视图、左视图、俯视图.
4、如图,在水平地面上,有一盏垂直于地面的路灯AB,在路灯前方竖立有一木杆CD.已知木杆长CD=2.5米,木杆与路灯的距离BC=5米,并且在D点测得灯源A的仰角为39°,请在图中画出木杆CD在灯光下的影子(用线段表示),并求出影长.(结果保留1位小数,参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.8)
5、(1)一个几何体由一些大小相同的小正方体搭成,如图是从上面看这个几何体的形状图,小正方形中的数字表示在该位置的小正方体的个数,请在网格中画出从正面和左面看到的几何体的形状图.
(2)用小立方块搭一几何体,使它从正面看,从左面看,从上面看得到的图形如图所示.请在从上面看到的图形的小正方形中填人相应的数字,使得小正方形中的数字表示在该位置的小立方块的个数.其中,图1填人的数字表示最多组成该几何体的小立方块的个数,图2填入的数字表示最少组成该几何体的小立方块的个数.
---------参考答案-----------
一、单选题
1、C
【分析】
根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.
【详解】
解:A.从上面看是一个圆,从正面和从左边看是一个矩形,故本选项不合题意;
B.从上面看是一个有圆心的圆,从正面和从左边看是一个等腰三角形,故本选项不合题意;
C.从三个方向看形状一样,都是圆形,故本选项符合题意;
D.从上面看是一个正方形,从正面和从左边看是一个长方形形,故本选项不合题意.
故选:C.
【点睛】
本题考查了简单几何体的三视图,从上面看到的图形是俯视图,从正面看到的图形是主视图,从左面看到的图形是左视图.
2、B
【分析】
根据左视图是从左面看到的图形判定则可.
【详解】
解:从左边看,是一个正方形,正方形的右上角有一条虚线.
故选:B.
【点睛】
本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.
3、A
【分析】
将太阳光视为平行光源,可得,MD=HE,即可得CM的值,故计算CD=CM+DM即可.
【详解】
如图所示,过D点作BG平行线交FE于点H,过E点作BG平行线交CD于点M
∵BG//ME//DH
∴∠BGA=∠MEC,∠BAG=∠DCE=90°
∴,MD=HE
∴
∴
∴CD=CM+DM=1+1.5=2.5
故答案选:A.
【点睛】
本题考查了相似三角形的判断即性质,由太阳光投影判断出平行关系进而求得相似是解题的关键.
4、B
【分析】
由主视图和左视图,可以确定是柱体,再结合俯视图即可得到正确答案.
【详解】
解:由主视图和左视图可以确定是柱体,又因为俯视图是三角形,可以确定该柱体是三棱柱.
故选:B
【点睛】
本题考查由三视图确定几何体,牢记相关知识点并能够灵活应用是解题关键.
5、B
【分析】
主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
【详解】
解:主视图和左视图相同,均有三列,小正方形的个数分别为1、2、1;
俯视图也有三列,但小正方形的个数为1、3、1.
故选:B.
【点睛】
本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提,画三视图时应注意“长对正,宽相等、高平齐”.
6、A
【分析】
根据左视图是指从物体左面向右面正投影得到的投影图,即可求解.
【详解】
解:A、左视图为圆,故本选项符合题意;
B、左视图为长方形,故本选项不符合题意;
C、左视图为三角形,故本选项不符合题意;
D、左视图为长方形,故本选项不符合题意;
故选:A
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
7、C
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱用实线表示,看不见的棱用虚线表示.
【详解】
解:从左面看去,是两个有公共边的矩形,如图所示:
故选:C.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.
8、B
【分析】
根据几何体的三视图特点解答即可.
【详解】
解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,
∴该几何体最少有4+2+1=7个小正方体组成,
故选:B.
【点睛】
本题考查几何体的三视图,掌握三视图的特点是解答的关键.
9、B
【分析】
找出从几何体的正面看所得到的图形即可.
【详解】
解:从礼品盒的正面看,可得图形:
故选:B.
【点睛】
此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.
10、B
【分析】
根据从左边看得到的图形是左视图即可得到答案.
【详解】
解:它的左视图是.
故选:B.
【点睛】
本题考查了简单几何体的三视图-左视图,理解左视图的定义“从左边看得到的图形是左视图”是解题关键,注意看不到但存在的线段要画成虚线.
二、填空题
1、球
【解析】
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
解:球的3个视图都为圆;
正方体的3个视图都为正方形;
所以主视图、左视图和俯视图都一样的几何体为球、正方体等.
故答案为:答案不唯一,如球、正方体等.
【点睛】
本题考查了几何体的三种视图,掌握常见几何体的三视图是关键.
2、
【解析】
【分析】
观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,根据勾股定理可得底面边长为a,根据长方形的面积公式和这个正三棱柱的侧面积为12,可得关于a的方程,解方程即可求得a的值.
【详解】
解:观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,则底面边长为a,
依题意有a×2×3=12,
解得a=.
故答案为:.
【点睛】
此题考查了由三视图判断几何体,关键是由三视图得到正三棱柱的高和底面边长.
3、3
【解析】
【分析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
解:从左边看,底层是两个小正方形,上层的右边是一个小正方形,
因为每个小正方形的面积为1,所以则它的左视图的面积为3.
故答案为:3.
【点睛】
本题考查了简单组合体的三视图,从左边看得到的图象是左视图.
4、162
【解析】
【分析】
展开后底面一边长为7cm,求出底面的周长,用底面周长×侧边长计算即可.
【详解】
解:∵一个直九棱柱底面的每条边长都等于3cm,
∴直九棱柱底面的周长为9×3=27cm;
侧面积是27×6=162(cm2).
故答案为162.
【点睛】
本题考查了几何体的侧面积的应用,关键是掌握直棱柱侧面积公式底面周长×侧棱长.
5、圆柱
【解析】
【分析】
根据三视图的定义求解即可.
【详解】
解:圆柱的主视图是矩形,
故答案为:圆柱.
【点睛】
本题考查三视图,解题的关键是掌握三视图的定义.
三、解答题
1、(1)见解析;(2)16
【分析】
(1)根据俯视图的信息,以及左视图和主视图的定义画图即可;
(2)在(1)的基础之上求解即可.
【详解】
解:(1)由俯视图可知,该组合体的主视图有3列,第1列有一个正方形,第2列有2个正方形,第3列有1个正方形;左视图有2列,第1列有2个正方形,第2列有2个正方形,如图所示:
(2)由主视图可知,共有4个相同的正方形组成,
∴,
故答案为:16.
【点睛】
本题考查画简单组合体的三视图,理解三视图的定义,灵活运用空间想象能力是解题关键.
2、见解析
【分析】
根据三视图的画法,直接画出主视图、左视图和俯视图即可.
【详解】
解:如图所示:
【点睛】
本题考查三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.
3、见解析
【分析】
主视图有3列,每列小正方形数目分别为1,1,2;左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每列小正方形数目分别为1,2,1.依此画出图形即可求解.
【详解】
解:如图所示:
【点睛】
此题考查的知识点是简单组合体的三视图,关键是明确主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
4、DC的影长为3.1m.
【分析】
直接延长AD交BC的延长线于点E,可得木杆CD在灯光下的影子,进而利用锐角三角函数关系得出答案.
【详解】
解:在过点D的水平线上取点F,
延长AD交BC于点E,光线被CD遮挡得到影子是CE,
则线段EC的长即为DC的影长,
∵∠ADF=39°,DF∥CE,
∴∠E=∠ADF=39°,
∵DC=2.5,
∴在Rt△DCE中,
tan39°=,
解得:EC=≈3.1(m),
答:DC的影长为3.1m.
【点睛】
本题考查解直角三角形,掌握解直角三角形的方法,选择恰当锐角三角函数是解题关键.
5、(1)见解析;(2)见解析
【分析】
(1)根据俯视图中小正方体的个数结合主视图,主视图是从前面向后看得到的图形,从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形画出图形,根据俯视图中小正方体的个数结合左视图,左视图是从左边向右看得到的图形,从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形画出图形即可;
(2)根据俯视图的图形两行三列,中间列一行,从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,左列前行可以是1个正方体或2个正方体,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,右边列后行可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2在俯视图中标出个数即可.
【详解】
解:(1)从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形,如图
从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形,
如图所示:
(2)从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,
从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,
左列前行可以是1个正方体或两个正方体,,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,后列可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2.
根据题意,填图如下:
【点睛】
本题考查根据俯视图画主视图与左视图,根据主视图与左视图确定组成图形的正方体的个数,从立体图形到平面图形的转化三视图,由平面图形三视图到立体图形还原几何体空间想象能力,本题难度较大,培养空间想象力,掌握相关知识是解题关键.