粤教版(2019)选择性必修一 2.3 单摆
一、单选题
1.如图所示,一质量为M的物块静止于A点,绳长为L,现给物块施加一初速度v,物块抵达B点时的速度恰好为0,且此时拉物块B的绳与竖直方向成45°夹角,绳长保持不变,若不计空气阻力,下列说法正确的是( )
A.物块将做简谐运动
B.满足关系式
C.物块第二次经过A点时的速度与第一次经过A点时的速度不同
D.设物块在运动时绳与竖直方向的夹角为β(β ≤ 45°),则当夹角为β时,绳子对物块的拉力大小为Mg(2-cosβ)
2.一摆长为L的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部将被挡住,使摆长发生变化。现使摆球作小角度摆动,图示为摆球从右边最高点M摆至左边最高点N的闪光照片(悬点和小钉未摄入),P为最低点,每相邻两次闪光的时间间隔相等。则小钉距悬点的距离为( )
A. B. C. D.条件不足,无法判断
3.某同学利用如图所示的单摆绘制出振动图像,若当地重力加速度g为9.8m/s2,估算此单摆的摆长并写出其振动方程( )
A.1m,x=3sinπt(cm) B.2m,x=3sinπt(cm)
C.1m,x=3cosπt(cm) D.2m,x3cosπt(cm)
4.图(a)、(b)分别是甲、乙两个单摆在同一地点做简谐运动的图像,下列说法中正确的是( )
A.甲、乙两单摆的摆球的质量相等
B.甲、乙两单摆的摆长之比为1∶2
C.甲单摆摆动的最大偏角大于乙甲单摆摆动的最大偏角
D.甲、乙两单摆摆动到最低点时,两摆球的向心加速度大小相等
5.如图所示,长度为L的轻绳上端固定在O点,下端系一小球(小球可以看成质点)。在O点正下方的P点固定一颗小钉子。现将小球拉到点A处,轻绳被拉直,然后由静止释放小球。点B是小球运动的最低位置,点C(图中未标出)是小球能够到达的左方最高位置。已知点A与点B之间的高度差为h,。A、B、P、O在同一竖直平面内。小球第一次从A点到B点所用时间为,小球第一次从B点到C点所用时间为,已知,、与之间的夹角很小。则的长度为( )
A. B. C. D.
6.如图,是一段竖直放置的光滑圆弧轨道,相距的、两点等高、距轨道最低点的竖直高度为。一小滑块自点由静止释放并开始计时,其速率随时间变化的图像可能为( )
A. B.
C. D.
7.单摆的振动周期在发生下述哪些情况时会增大( )
A.摆球质量增大
B.摆长减小
C.单摆由赤道移到北极
D.单摆由海平面移到高山顶上
8.如图所示,一单摆摆长为l,在其悬挂点O的正下方 处的P点有一个钉子,摆线在钉子的右侧.现将摆球向其平衡位置左侧移动,移到摆线与竖直成5°角时无初速释放,则它振动的周期为( )
A.T=2π
B.T=2π
C.T=π+π
D.无法确定
9.在淄博走时准确的摆钟,被考察队员带到珠穆朗玛峰的顶端,则这个摆钟( )
A.变慢了,重新校准应减小摆长 B.变慢了,重新校准应增大摆长
C.变快了,重新校准应减小摆长 D.变快了,重新校准应增大摆长
10.电场强度大小为E、方向竖直向上的匀强电场中,一长度为L的绝缘细线,一端固定于O点,另一端拴一质量为m、带电量为+q的小球(可质为质点),小球静止在图中A点,细线绷紧。现将小球拉至B点(),由静止释放。已知重力加速度为g。则小球做简谐运动的过程中( )
A.机械能守恒
B.回复力等于重力、电场力和细线拉力的合力
C.周期为
D.周期为
11.把一调准的摆钟从东莞移到北京后,下列说法正确的是( )
A.摆动周期变长了,要调准需增加摆长
B.摆动周期变长了,要调准需缩短摆长
C.摆动周期变短了,要调准需增加摆长
D.摆动周期变短了,要调准需缩短摆长
12.单摆在经过平衡位置时,它的( )
A.速度为0 B.加速度为0 C.回复力为0 D.机械能为0
13.如图所示,表面光滑、半径为R的圆弧形轨道AP与水平地面平滑连接,AP弧长为S,。半径为r的小球从A点静止释放,运动到最低点P时速度大小为v,重力加速度为g,则小球从A运动到P的时间是( )
A. B. C. D.
14.某单摆在竖直平面内做小摆角振动,周期为2 s。如果从摆球向右运动通过平衡位置时开始计时,在t=1.4 s至t=1.5 s的过程中,摆球的( )
A.速度向右在增大,加速度向右在减小
B.速度向左在增大,加速度向左在增大
C.速度向左在减小,加速度向右在增大
D.速度向右在减小,加速度向左在减小
15.若单摆的摆长不变,摆球的质量增加为原来的4倍,摆球经过平衡位置的速度减为原来的,则单摆振动的物理量变化的情况是( )
A.频率不变,振幅不变 B.频率不变,振幅改变
C.频率改变,振幅改变 D.频率改变,振幅不变
二、填空题
16.两个摆长分别为和的单摆,做小振幅振动,它们的位移时间图像分别如图中的1和2所示,则为___________.
17.有甲、乙两个单摆,在同一地点、同一时间内甲摆摆动35次,乙摆摆动21次,如甲摆的摆长是45cm,则乙摆的摆长是______。
18.如图(a)、(b),两个摆长均为l的单摆在竖直面(纸面)内做摆角很小(约为2°)的摆动,图(b)中悬点O正下方P处固定着一枚钉子,OP=0.25l。①两单摆的周期分别为TA=_______,TB=______;②若将两摆球从图示位置(悬线与竖直方向的夹角相同)由静止释放,摆球到达左侧最高点与各自平衡位置的高度差分别为hA、hB,则hA_______(填“>”“<”或“=”)hB。(不计摆球直径,不计悬线接触钉子时的能量损失,重力加速度大小为g。)
19.如图所示为甲乙两个单摆的振动图像,由图可知:
①甲乙两个单摆的摆长之比为_________
②以向右为单摆偏离平衡位置位移的正方向,从t=0时刻起,当甲第一次到达右方最大位移时,乙偏离平衡位置的位移为___________cm
三、解答题
20.如图甲所示,摆球在竖直平面内做简谐运动,通过力传感器测量摆线拉力的大小随时间t变化规律如图乙所示,摆球经过最低点时的速度大小,忽略空气阻力,取,求:
(1)单摆的摆长L;
(2)摆球的质量m;
(3)摆线拉力的最小值。
21.有甲、乙两个单摆,甲的摆长是乙的4倍,那么,在甲摆动5次的时间内,乙摆动了几次?
22.嫦娥五号于2020年11月24日由长征五号遥五运载火箭准时并成功发射,之后探测器地月转移、近月制动、两两分离、平稳落月、钻表取样、月面起飞、交会对接及样品转移、环月等待、月地转移,12月17日再入返回、安全着陆,整个工程任务现在转入科学研究的新阶段。23天的时间内,嫦娥五号完成了一次对接、六次分离,两种方式采样、五次样品转移,经历了11个重大阶段和关键步骤,环环相连、丝丝入扣。在不久的将来,我国宇航员将登上月球。为了测量月球的密度,宇航员用单摆进行测量:测出摆长为l,让单摆在月球表面做小幅度振动,测出n次全振动所用时间为t。已知引力常量为G,月球半径为R,将月球视为密度均匀的球体,忽略月球自转。求:
(1)该单摆在月球表面振动的周期T摆;
(2)月球的质量M;
(3)当探测器在离月面高度h处绕月球做匀速圆周运动时,该探测器运动的周期T=?
23.将一测力传感器连接到计算机上就可以用来测量快速变化的力,图甲表示小滑块(可视为质点)沿固定的光滑半球形容器内壁在竖直平面内的A、A′之间来回滑动,A、A′两点与O点连线与竖直方向的夹角相等且都为θ,θ小于5°。图乙表示滑块对器壁的压力F随时间t变化的曲线,且图中t=0为滑块从A点开始运动的时刻,试根据力学规律和题中(包括图中)所给的信息,求:(g取10 m/s2)
(1)小滑块的质量m;
(2)容器的半径R。
24.如图甲,有一悬在O点的单摆,将小球(可视为质点)拉到A点后释放,小球在竖直平面内的ABC之间来回摆动。已知B点为运动中最低点,摆长为L,摆角为α,小球质量为m。在O点接有一力传感器,图乙表示从某时刻开始计时,由力传感器测出的细线对摆球的拉力大小F随时间变化的曲线,求:
(1)单摆的周期T和当地重力加速度g的大小;
(2)力传感器测出的拉力F的最大值F1和最小值F2。
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.C
【解析】
【详解】
A.由题意可知,物块的摆角为45°,不满足单摆摆角小于5°的条件,则物块的运动不能视为简谐运动,故A错误;
B.对物块从最低点到最高点的运动过程,根据动能定理有
解得
故B错误;
C.根据机械能守恒定律可知物块第二次经过A点时的速度与第一次经过A点时的速度大小相同,但方向不同,故C正确;
D.设夹角为β时物块的速度大小为v′,根据动能定理有
根据牛顿第二定律有
联立解得
故D错误。
故选C。
2.C
【解析】
【分析】
【详解】
由图可知,在左、右振动周期之比
设小钉距悬点的距离为x,根据
可得
整理可得
故选C。
3.A
【解析】
【分析】
【详解】
由图可知单摆的周期
T=2s
振幅
A=3cm
根据单摆周期公式可得摆长
代入数据解得
又
则其振动方程为
x=3sinπt(cm)
故选A。
4.C
【解析】
【详解】
A.由振动图像无法判断甲、乙两单摆的摆球的质量关系,A错误;
B.由单摆的周期公式,可得单摆的摆长之比为
B错误;
C.摆球的振幅为
由于甲的摆长小,振幅相等,所以甲的摆角大,C正确;
D.摆球在最大位移处的高度为
摆球在最低点的速度为
摆球在最低点的向心加速度为
联立可得
由于甲的摆角大,所以甲的向心加速度大,D错误。
故选C。
5.B
【解析】
【详解】
由于、与之间的夹角很小,所以小球从A点到B点和从B点到C点的运动都可以看作是单摆运动,根据单摆周期公式有
所以
,
选项ACD错误,B正确。
故选B。
6.A
【解析】
【分析】
【详解】
设圆弧半径为R,则由几何关系可知
解得
R=4.8m
球在圆弧槽中来回运动可看做单摆,其周期为
小滑块自A点由静止释放速率先增加后减小,则速率随时间变化图像为A。
故选A。
7.D
【解析】
【分析】
【详解】
A.单摆的周期公式可表示为
T=2π
周期与摆球质量无关,选项A错误;
B.摆长变小,周期变小,选项B错误;
C.由赤道到北极g变大,T变小,选项C错误;
D.海拔高度增大,g变小,T增大,选项D正确。
故选D。
8.C
【解析】
【详解】
单摆的摆线与竖直成5°角时无初速释放,摆到竖直位置的时间为:
由机械能守恒可知,小球单摆左侧和右侧的高度相同,而右侧的摆线长,故其摆角应小于左侧的摆角,即小于5°,从竖直位置到右侧最高点的时间为:
故小球的运动周期为
T=t1+t2=π+π
故C正确.
9.A
【解析】
【详解】
根据单摆周期公式
在淄博走时准确的摆钟,被考查队员带到珠穆朗玛峰的顶端,重力加速度g变小,周期T变大,所以摆钟变慢了,为了使T变回原来的值,需要重新校准,应减小摆长L。
故选A。
10.D
【解析】
【详解】
A.小球做简谐运动过程中,电场力做功,所以机械能不守恒,故A错误;
B.回复力等于重力和电场力的合力沿轨迹切线方向的分力,故B错误;
CD.小球的等效重力加速度为
根据单摆的周期公式可得小球做简谐运动的周期为
故C错误,D正确。
故选D。
11.C
【解析】
【详解】
东莞的重力加速度小于北京的重力加速度,把一调准的摆钟从东莞移到北京后,根据可知,摆动周期T将变短,要调准需增加摆长L,故C正确,ABD错误。
故选C。
12.C
【解析】
【详解】
ACD.由简谐运动特点可知,单摆在经过平衡位置时,它的回复力为0,速度最大,则机械能不为0,故AD错误,C正确;
B.由于单摆做曲线运动,加速度不为0,故B错误。
故选C。
13.B
【解析】
【分析】
【详解】
因为AP弧长为S,且,所以小球做单摆运动,根据单摆的周期公式可得
由题意可知,摆长为
小球从A运动到P的时间为四分之一个周期,即有
ACD错误,B正确。
故选B。
14.C
【解析】
【分析】
【详解】
单摆的周期为2 s,摆球向右通过平衡位置时开始计时,当t=1.4 s时,摆球已通过平衡位置,正在向左方最大位移处做减速运动,由于位移在变大,根据
可知,加速度也在变大,方向向右,C正确。
故选C。
15.B
【解析】
【分析】
【详解】
单摆周期公式为,则单摆的频率为
单摆摆长L与单摆所处位置的g不变,摆球质量增加为原来的4倍,单摆频率f不变,单摆运动过程只有重力做功,机械能守恒,摆球经过平衡位置时的速度减为原来的,由机械能守恒定律可知,摆球到达的最大高度变小,单摆的振幅变小。故ACD错误,B正确。
故选B。
16.9:1
【解析】
【详解】
试题分析:1和2两个单摆的周期之比为.由单摆的周期公式得,
考点:考查了单摆周期
名师点睛:关键是能通过图象得到周期,然后结合单摆的周期公式分析.基础题,较易
17.125
【解析】
【分析】
【详解】
甲、乙两个单摆,在同一地点、同一时间内甲摆摆动35次,乙摆摆动21次,由单摆周期公式可知
甲摆的摆长是45cm,则乙摆的摆长是125cm。
18. =
【解析】
【详解】
①[1]图(a)中A单摆的摆长为,根据单摆周期公式,可得
[2] 图(b)中B单摆在右边时摆长为,根据单摆周期公式,可得
单摆在左边时摆长为,根据单摆周期公式,可得
故该单摆的周期为
将T1、T2代入解得
②[3]两单摆从同一高度下落,根据机械能守恒可知,两单摆在最低点的线速度大小相等,又根据题意可知,不计悬线接触钉子时的能量损失,故B单摆在最低的速度仍然与A单摆相同,所以根据机械能守恒可知,两单摆在向左摆动过程,可以摆到到相同的高度,故hA=hB。
19.
【解析】
【详解】
试题分析:①从图像中可得,,根据单摆周期公式可得
②乙振动的角速度为,故乙振动的表达式为(m),当甲第一次到达右方最大位移时,经历的时间为1s,代入可得
考点:考查了单摆周期
【名师点睛】
本题关键是根据位移时间关系图象得到两个单摆的振幅和周期的关系,然后结合周期公式进行分析;
20.(1)1m;(2)0.1kg;(3)0.99N
【解析】
【分析】
【详解】
(1)由乙图可知单摆周期为
根据单摆周期公式
解得
(2)当拉力最大时,即
摆球处在最低点
由牛顿第二定律
解得
(3)从最低点到最高点
解得
最高点
21.10次
【解析】
【分析】
【详解】
根据单摆的周期公式
可知,因为甲的摆长是乙的4倍,所以
所以在甲摆动5次的时间内,乙摆动了10次。
22.(1);(2);(3)
【解析】
【分析】
【详解】
(1)该单摆在月球表面振动的周期
(2)对单摆
则
在月球表面,月球对物体的万有引力等于物体受到的重力,则
所以
(3)探测器离月面高度h处绕月球做匀速圆周运动,则
解得
23.(1)0.05 kg;(2)0.1 m
【解析】
【分析】
【详解】
(1)在最高点A,有
在最低点B,有
由题图乙可知
,
从A到B,滑块机械能守恒,有
解得
(2)完成一次全振动的时间为一个周期,由题图乙得小滑块做简谐运动的周期
由题意可知
解得
24.(1)T=2t0;;(2);
【解析】
【分析】
【详解】
(1)由图可知,单摆的周期
T=2t0
根据
解得当地重力加速度
(2)摆球在最高点时拉力最小,则
到达最低点时拉力最大,则
解得
答案第1页,共2页
答案第1页,共2页