2021-2022学年鲁教版(五四制)七年级数学下册8.5 平行线的性质定理 优生辅导训练(word版,含答案)

文档属性

名称 2021-2022学年鲁教版(五四制)七年级数学下册8.5 平行线的性质定理 优生辅导训练(word版,含答案)
格式 doc
文件大小 453.0KB
资源类型 教案
版本资源 鲁教版
科目 数学
更新时间 2022-03-29 16:11:42

图片预览

文档简介

2021-2022学年鲁教版七年级数学下册《8.5平行线的性质定理》优生辅导训练(附答案)
一.选择题
1.如图,有下列判定,其中正确的有(  )
①若∠1=∠3,则AD∥BC;
②若AD∥BC,则∠1=∠2=∠3;
③若∠1=∠3,AD∥BC,则∠1=∠2;
④若∠C+∠3+∠4=180°,则AD∥BC.
A.1个 B.2个 C.3个 D.4个
2.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有(  )
A.①②③ B.①②④ C.③④ D.①②③④
3.如图,AB∥EF,C点在EF上,∠EAC=∠ECA,BC平分∠DCF,且AC⊥BC.下列结论:
①AC平分∠DCE;②AE∥CD;③∠1+∠B=90°;④∠BDC=2∠1.
其中结论正确的个数有(  )
A.1个 B.2个 C.3个 D.4个
二.填空题
4.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=62°,则∠AEG=   °.
5.已知,BC∥OA,∠B=∠A=100°,点E、F在BC上,OE平分∠BOF,且∠FOC=∠AOC,下列结论中正确的是:   .
①OB∥AC;
②∠EOC=45°;
③∠OCB:∠OFB=1:3;
④若∠OEB=∠OCA,则∠OCA=60°.
6.如图,将一张纸片沿EF进行折叠,已知AB∥CD,若∠DFC′=50°,则∠AEF=   .
7.如图a是长方形纸带,∠DEF=16°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是   .
8.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两块三角尺至少有一组边互相平行.如图2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为    .
9.如图,已知∠ABD=∠PCE,AB∥CD,∠AEC的角平分线交直线CD于点H,∠AFD=86°,∠H=22°,∠PCE=   °.
三.解答题
10.已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系   ;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
11.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.
(1)∠1与∠2有什么关系,为什么?
(2)BE与DF有什么关系?请说明理由.
12.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
13.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.
(1)判断DG与BC的位置关系,并说明理由;
(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?
14.如图,AB∥CD,点E为两直线之间的一点
(1)如图1,若∠BAE=35°,∠DCE=20°,则∠AEC=   ;
(2)如图2,试说明,∠BAE+∠AEC+∠ECD=360°;
(3)①如图3,若∠BAE的平分线与∠DCE的平分线相交于点F,判断∠AEC与∠AFC的数量关系,并说明理由;
②如图4,若设∠E=m,∠BAF=∠FAE,∠DCF=∠FCE,请直接用含m、n的代数式表示∠F的度数.
15.已知直线AB∥CD,EF是截线,点M在直线AB、CD之间.
(1)如图1,连接GM,HM.求证:∠M=∠AGM+∠CHM;
(2)如图2,在∠GHC的角平分线上取两点M、Q,使得∠AGM=∠HGQ.请直接写出∠M与∠GQH之间的数量关系;
(3)如图3,若射线GH平分∠BGM,点N在MH的延长线上,连接GN,若∠AGM=∠N,∠M=∠N+∠FGN,求∠MHG的度数.
16.如图,AB∥CD,点E是AB上一点,连结CE.
(1)如图1,若CE平分∠ACD,过点E作EM⊥CE交CD于点M,试说明∠A=2∠CME;
(2)如图2,若AF平分∠CAB,CF平分∠DCE,且∠F=70°,求∠ACE的度数;
(3)如图3,过点E作EM⊥CE交∠DCE的平分线于点M,MN⊥CM交AB于点N,CH⊥AB,垂足为H.若∠ACH=∠ECH,请直接写出∠MNB与∠A之间的数量关系.
17.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由;
(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠FAD=60°,∠ABC=40°,求∠BED的度数;
(3)如图3,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠FAD=α,∠ABC=β,请你求出∠BED的度数(用含α,β的式子表示).
18.已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,连接PM、PN、PQ,PQ平分∠MPN,如图①.
(1)若∠PMA=α、∠PQC=β,求∠NPQ的度数(用含α,β的式子表示);
(2)过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F,如图②,请你判断EF与PQ的位置关系,并说明理由;
(3)在(2)的条件下,连接EN,如图③,若∠NEF=∠PMA,求证:NE平分∠PNQ.
19.如图,已知AC∥FE,∠1+∠2=180°.
(1)求证:∠FAB=∠BDC;
(2)若AC平分∠FAD,EF⊥BE于点E,∠FAD=80°,求∠BCD的度数.
20.如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.
(1)试说明:∠BAG=∠BGA;
(2)如图1,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG﹣∠F=45°,求证:CF平分∠BCD.
(3)如图2,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.
21.(1)【问题】
如图1,若AB∥CD,∠BEP=25°,∠PFC=150°.求∠EPF的度数;
(2)【问题迁移】
如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;
(3)【联想拓展】
如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.
22.如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一个动点P,满足0°<∠EPF<180°.
(1)试问:∠AEP,∠CFP,∠EPF满足怎样的数量关系?
解:由于点P是平行线AB,CD之间一动点,因此需对点P的位置进行分类讨论.
①如图1,当点P在EF的左侧时,猜想∠AEP,∠CFP,∠EPF满足的数量关系,并说明理由;
②如图2,当点P在EF的右侧时,直接写出∠AEP,∠CFP,∠EPF满足的数量关系为    .
(2)如图3,QE,QF分别平分∠PEB,∠PFD,且点P在EF左侧.
①若∠EPF=100°,则∠EQF的度数为    ;
②猜想∠EPF与∠EQF的数量关系,并说明理由.
参考答案
一.选择题
1.解:①若∠1=∠3,则AB=AD,故本小题错误;
②若AD∥BC,则∠2=∠3,故本小题错误;
③若∠1=∠3,AD∥BC,则∠1=∠2,正确;
④若∠C+∠3+∠4=180°,则AD∥BC正确;
综上所述,正确的有③④共2个.
故选:B.
2.解:∵∠1+∠2=90°,∠3+∠2=90°,
∴∠1=∠3,①正确;
∵∠2=30°,
∴∠1=60°,
又∵∠E=60°,
∴∠1=∠E,
∴AC∥DE,②正确;
∵∠2=30°,
∴∠1+∠2+∠3=150°,
又∵∠C=45°,
∴BC与AD不平行,③错误;
∵∠2=30°
∴AC∥DE,
∴∠4=∠C,④正确.
故选:B.
3.解:∵AB∥EF,
∴∠ECA=∠BAC,∠BCF=∠B,
∵AC⊥BC,
∴∠ACB=90°,
∴∠1+∠BCD=90°,∠ECA+∠BCF=90°,
∵BC平分∠DCF,
∴∠BCD=∠BCF,
∴∠1=∠ECA,
∴AC平分∠DCE,①正确;
∵∠EAC=∠ECA,
∴∠EAC=∠1,
∴AE∥CD,②正确;
∵∠BCF=∠B,∠BCD=∠BCF,
∴∠B=∠BCD,
∴∠1+∠B=90°,③正确;
∵∠1=∠ECA=∠BAC,∠BDC=∠BAC+∠1,
∴∠BDC=2∠1,④正确;
故选:D.
二.填空题
4.解:∵四边形ABCD是长方形,
∴AD∥BC,
∴∠DEF=∠1=62°,
∵沿EF折叠D到D′,
∴∠FEG=∠DEF=62°,
∴∠AEG=180°﹣62°﹣62°=56°,
故答案为:56.
5.解:∵BC∥OA,∠B=∠A=100°,
∴∠AOB=∠ACB=180°﹣100°=80°,
∴∠A+∠AOB=180°,
∴OB∥AC.
故①正确;
∵OE平分∠BOF,
∴∠FOE=∠BOE=∠BOF,
∴∠FOC=∠AOC=∠AOF,
∴∠EOC=∠FOE+∠FOC=(∠BOF+∠AOF)=×80°=40°.
故②错误;
∵∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,
∴∠OCB:∠OFB=1:2.
故③错误;
∵∠OEB=∠OCA=∠AOE=∠BOC,
∴∠AOE﹣∠COE=∠BOC﹣∠COE,
∴∠BOE=∠AOC,
∴∠BOE=∠FOE=∠FOC=∠AOC=∠AOB=20°,
∴∠OCA=∠BOC=3∠BOE=60°.
故④正确.
故答案为:①④.
6.解:∵AB∥CD,
∴∠EOF=∠BEO,
由折叠的性质得:∠AEF=∠OEF,A'E∥C'F,
∴∠EOF=∠DFC'=50°,
∴∠BEO=50°,
∴∠AEF=∠OEF=(180°﹣50°)=65°;
故答案为:65°.
7.解:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠BFE=∠DEF=16°,
∴∠CFE=∠CFG﹣∠EFG=180°﹣2∠BFE﹣∠EFG=180°﹣3×16°=132°,
故答案为:132°.
8.解:如图,
当AC1∥DE时,∠B1AD=∠DAE=45°;
当B2C2∥AD时,∠DAB=∠B=60°;
当BC∥AE时,∵∠EAB3=∠B3=60°,∴∠B3AD=∠DAE+∠EAB3=45°+60°=105°;
当AB4∥DE时,∵∠E=∠EAB4=90°,∴∠B4AD=∠DAE+∠EAB4=45°+90°=135°.
故答案为:45°,60°,105°,135°.
9.解:∵AB∥CD,
∴∠ABD=∠PDB,
∵∠ABD=∠PCE,
∴∠PDB=∠PCE,
∴BD∥CE,
∴∠CEG=∠DGH,
∵EH平分∠AEC,
∴∠CEH=∠AEH,
∵∠DGH=∠EGF,
∴∠EGF=∠GEF,
∵∠AFD=∠AEG+∠EGF=2∠EGF=86°,
∴∠EGF=43°,
∴∠DGH=43°,
∴∠PCE=∠PDG=∠H+∠DGH=65°,
故答案为:65.
三.解答题
10.解:(1)如图1,AM与BC的交点记作点O,
∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°,
故答案为:∠A+∠C=90°;
(2)如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,即∠ABD+∠ABG=90°,
又∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,BG∥AM,
∴CN∥BG,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)可得∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,则
∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得
(2α+β)+3α+(3α+β)=180°,①
由AB⊥BC,可得
β+β+2α=90°,②
由①②联立方程组,解得α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
11.解:(1)∠1+∠2=90°;
∵BE,DF分别是∠ABC,∠ADC的平分线,
∴∠1=∠ABE,∠2=∠ADF,
∵∠A=∠C=90°,
∴∠ABC+∠ADC=180°,
∴2(∠1+∠2)=180°,
∴∠1+∠2=90°;
(2)BE∥DF;
在△FCD中,∵∠C=90°,
∴∠DFC+∠2=90°,
∵∠1+∠2=90°,
∴∠1=∠DFC,
∴BE∥DF.
12.解:(1)如图1,∵∠1与∠2互补,
∴∠1+∠2=180°.
又∵∠1=∠AEF,∠2=∠CFE,
∴∠AEF+∠CFE=180°,
∴AB∥CD;
(2)如图2,由(1)知,AB∥CD,
∴∠BEF+∠EFD=180°.
又∵∠BEF与∠EFD的角平分线交于点P,
∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,
∴∠EPF=90°,即EG⊥PF.
∵GH⊥EG,
∴PF∥GH;
(3)∠HPQ的大小不会发生变化,利用如下:
∵∠PHK=∠HPK
∴∠PKG=2∠HPK
∵GH⊥EG
∴∠KPG=90°﹣∠PKG=90°﹣2∠HPK
∴∠EPK=180°﹣∠KPG=90°+2∠HPK
∵PQ平分∠EPK
∴∠QPK=∠EPK=45°+∠HPK
∴∠HPQ=∠QPK﹣∠HPK=45°
∴∠HPQ的大小不会发生变化,其值为45°.
13.解:(1)DG∥BC.
理由:∵CD∥EF,
∴∠2=∠BCD.
∵∠1=∠2,
∴∠1=∠BCD,
∴DG∥BC;
(2)CD⊥AB.
理由:∵由(1)知DG∥BC,∠3=85°,
∴∠BCG=180°﹣85°=95°.
∵∠DCE:∠DCG=9:10,
∴∠DCE=95°×=45°.
∵DG是∠ADC的平分线,
∴∠ADC=2∠CDG=90°,
∴CD⊥AB.
14.解:
(1)55°
如图所示,过点E作EF∥AB,
∵AB∥CD∴AB∥CD∥EF,
∴∠BAE=∠1,∠ECD=∠2,
∴∠AEC=∠1+∠2=∠BAE+∠ECD=35°+20°=55°,
故答案为55°.
(2)如图所示,过点E作EG∥AB,
∵AB∥CD∴AB∥CD∥EG,
∴∠A+∠1=180°,∠C+∠2=180°,
∴∠A+∠1+∠2+∠C=360°,
即∠BAE+∠AEC+∠ECD=360°.
(3)①2∠AFC+∠AEC=360°,理由如下:
由(1)可得,∠AFC=∠BAF+∠DCF,
∵AF平分∠BAE,CF平分∠DCE,
∴∠BAE=2∠BAF,∠DCE=2∠DCF,
∴∠BAE+∠DCE=2∠AFC,
由(2)可知,∠BAE+∠AEC+∠DCE=360°,
∴2∠AFC+∠AEC=360°.
②由①知∠F+∠FAE+∠E+∠FCE=360°,
∵∠BAF=∠FAE,∠DCF=∠FCE,∠BAF+∠DCF=∠F,
∴∠F=(∠FAE+∠FCE),
∴∠FAE+∠FCE=n∠F,
∴∠F+∠E+n∠F=360°,
∴(n+1)∠F=360°﹣∠E=360°﹣m,
∴∠F=.
15.(1)证明:如图1,过点M作MR∥AB,
又∵AB∥CD,
∴AB∥CD∥MR.
∴∠GMR=∠AGM,∠HMR=∠CHM.
∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.
(2)解:∴∠M+∠HQG=180°,
理由:∵MH是∠CHG的平分线,
∴∠CHM=∠MHG,
由(1)知∠M=∠AGM+∠MHC,
∵∠MQG=∠HGQ+∠MHG,∠AGM=∠HGQ,
∴∠M=∠MQG,
∵∠MQG+∠HQG=180°,
∴∠M+∠HQG=180°.
(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,
∵射线GH是∠BGM的平分线,
∴∠FGM=BGM=(180°﹣∠AGM)=90°﹣α,
∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,
∵∠M=∠N+∠FGN,
∴2α+β=2α+∠FGN,
∴∠FGN=2β,
过点H作HT∥GN,
则∠MHT=∠N=2α,∠GHT=∠FGN=2β,
∴∠GHM=∠MHT+∠GHT=2α+2β,
∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,
∵AB∥CD,
∴∠AGH+∠CHG=180°,
∴90°+α+2α+3β=180°,
∴α+β=30°,
∴∠GHM=2(α+β)=60°.
16.(1)证明:∵EM⊥CE,
∴∠CEM=90°.
∵∠AEC+∠CEM+∠BEM=180°,
∴∠AEC+∠BEM=90°.
∵AB∥CD,
∴∠AEC=∠ECD,∠CME=∠BEM.
∴∠ECD+∠CME=90°.
∴2∠ECD+2∠CME=180°.
∵CE平分∠ACD,
∴ACD=2∠ECD.
∴∠ACD+2∠CME=180°.
∵AB∥CD,
∴∠ACD+∠A=180°.
∴∠A=2∠CME.
(2)解:过点F作FM∥AB,如图,
∵AB∥CD,
∴FM∥AB∥CD.
∴∠AFM=∠BAF,∠CFM=∠DCF.
∴∠AFM+∠CFM=∠BAF+∠DCF.
即∠AFC=∠BAF+∠DCF.
∵AF平分∠CAB,CF平分∠DCE,
∴∠CAB=2∠BAF,∠DCE=2∠DCF.
∴∠CAB+∠DCE=2(∠BAF+∠DCF)=2∠AFC.
∵∠AFC=70°,
∴∠CAB+∠DCE=140°.
∵AB∥CD,
∴∠CAB+∠ACE+∠DCE=180°.
∴∠ACE=180°﹣(∠CAB+∠DCE)
=180°﹣140°
=40°.
(3)∠MNB与∠A之间的数量关系是:∠MNB=135°﹣∠A.
延长CM交AN的延长线于点F,如图,
∵MN⊥CM,
∴∠NMF=90°.
∴∠MNB=90°﹣∠F.
同理:∠HCF=90°﹣∠F.
∴∠MNB=∠HCF.
∵∠ACH=∠ECH,
∴设∠ACH=x,则∠ECH=2x.
∵CM平分∠DCE,
∴设∠ECM=∠DCM=y.
∴∠MNB=∠HCF=2x+y.
∵AB∥CD,CH⊥AB,
∴CH⊥CD.
∴∠HCD=90°.
∴∠ECH+∠ECD=90°.
∴2x+2y=90°.
∴x+y=45°.
∵CH⊥AB,
∴∠A=90°﹣∠ACH=90°﹣x.
∴∠A+∠MNB=90°﹣x+2x+y=90°+x+y=135°.
∴∠MNB=135°﹣∠A.
17.解:(1)成立,
理由:如图1中,作EF//AB,则有EF//CD,
∴∠1=∠BAE,∠2=∠DCE,
∴∠AEC=∠1+∠2=∠BAE+∠DCE;
(2)如图2,过点E作EH//AB,
∵AB//CD,∠FAD=60°,
∴∠FAD=∠ADC=60°,
∵DE平分∠ADC,∠ADC=60°,
∴,
∵BE平分∠ABC,∠ABC=40°,
∴,
∵AB//CD,
∴AB//CD//EH,
∴∠ABE=∠BEH=20°,∠CDE=∠DEH=30°,
∴∠BED=∠BEH+∠DEH=50°.
(3)如图3,过点E作EG//AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=β,∠ADC=∠FAD=α,
∴,,
∵AB//CD,
∴AB//CD//EG,
∴,,
∴.
18.解:(1)过点P作PR∥AB,
∵AB∥CD,
∴AB∥CD∥PR,
∴∠MPR=∠PMA=α,∠RPQ=∠PQC=β,
∴∠MPQ=∠MPR+∠RPQ=α+β,
∵PQ平分∠MPN,
∴∠NPQ=∠MPQ=α+β;
(2)如图②,EF⊥PQ,理由如下:
∵PQ平分∠MPN.
∴∠MPQ=∠NPQ=α+β,
∵QE∥PN,
∴∠EQP=∠NPQ=α+β,
∴∠EPQ=∠EQP=α+β,
∵EF平分∠PEQ,
∴∠PEQ=2∠PEF=2∠QEF,
∵∠EPQ+∠EQP+∠PEQ=180°,
∴2∠EPQ+2∠PEF=180°,
∴∠EPQ+∠PEF=90°,
∴∠PFE=180°﹣90°=90°,
∴EF⊥PQ;
(3)由(2)可知:∠EQP=∠AMP+∠PQC,∠EFQ=90°,
∴∠QEF=90°﹣(∠AMP+∠PQC),
∴∠NQE=∠PQC+∠EQP=∠AMP+2∠PQC,
∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE
=180°﹣[90°﹣(∠AMP+∠PQC)]﹣(∠AMP+2∠PQC)﹣∠QNE
=180°﹣90°+∠AMP+∠PQC﹣∠AMP﹣2∠PQC﹣∠QNE
=90°﹣∠PQC﹣∠QNE,
∵∠NEF=∠AMP,
∴90°﹣∠PQC﹣∠QNE=∠AMP,
即∠APM+2∠PQC+2∠QNE=180°,
∴∠NQE+2∠QNE=180°,
∵∠NQE+∠QNE+∠NEQ=180°,
∴∠QNE=∠NEQ,
∵QE∥PN,
∴∠PNE=∠QEN,
∴∠PNE=∠QNE,
∴NE平分∠PNQ.
19.(1)证明:∵AC∥EF,
∴∠1+∠FAC=180°,
又∵∠1+∠2=180°,
∴∠FAC=∠2,
∴FA∥CD,
∴∠FAB=∠BDC;
(2)解:∵AC平分∠FAD,
∴∠FAC=∠CAD,∠FAD=2∠FAC,
由(1)知∠FAC=∠2,
∴∠FAD=2∠2,
∴∠2=∠FAD,
∵∠FAD=80°,
∴∠2=×80°=40°,
∵EF⊥BE,AC∥EF,
∴AC⊥BE,
∴∠ACB=90°,
∴∠BCD=90°﹣∠2=50°.
20.(1)证明:∵AD∥BC,
∴∠GAD=∠BGA,
∵AG平分∠BAD,
∴∠BAG=∠GAD
∴∠BAG=∠BGA;
(2)解:∵∠BGA=∠F+∠BCF,
∴∠BGA﹣∠F=∠BCF,
∵∠BAG=∠BGA,
∴∠∠BAG﹣∠F=∠BCF,
∵∠BAG﹣∠F=45°,
∴∠BCF=45°,
∵∠BCD=90°,
∴CF平分∠BCD;
(3)解:有两种情况:
①当M在BP的下方时,如图5,
设∠ABC=4x,
∵∠ABP=3∠PBG,
∴∠ABP=3x,∠PBG=x,
∵AG∥CH,
∴∠BCH=∠AGB==90°﹣2x,
∵∠BCD=90°,
∴∠DCH=∠PBM=90°﹣(90°﹣2x)=2x,
∴∠ABM=∠ABP+∠PBM=3x+2x=5x,
∠GBM=2x﹣x=x,
∴∠ABM:∠GBM=5x:x=5;
②当M在BP的上方时,如图6,
同理得:∠ABM=∠ABP﹣∠PBM=3x﹣2x=x,
∠GBM=2x+x=3x,
∴∠ABM:∠GBM=x:3x=.
综上,的值是5或.
21.解:(1)如图1,过点P作PQ∥AB,
∵PQ∥AB,AB∥CD,
∴CD∥PQ.
∴∠CFP+∠FPQ=180°
∴∠FPQ=180°﹣150°=30°,
又∵PQ∥AB,
∴∠BEP=∠EPQ=25°,
∴∠EPF=∠EPQ+∠FPQ=25°+30°=55°;
(2)∠PFC=∠PEA+∠P,
理由:如图2,过P点作PN∥AB,则PN∥CD,
∴∠PEA=∠NPE,
∵∠FPN=∠NPE+∠FPE,
∴∠FPN=∠PEA+∠FPE,
∵PN∥CD,
∴∠FPN=∠PFC,
∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;
(3)如图3,过点G作AB的平行线GH.
∵GH∥AB,AB∥CD,
∴GH∥AB∥CD,
∴∠HGE=∠AEG,∠HGF=∠CFG,
又∵∠PEA的平分线和∠PFC的平分线交于点G,
∴∠HGE=∠AEG=∠AEP,∠HGF=∠CFG=∠CFP,
同(1)易得,∠CFP=∠P+∠AEP,
∴∠HGF=(∠P+∠AEP)=(α+∠AEP),
∴∠EGF=∠HGF﹣∠HGE=(α+∠AEP)=α+∠AEP﹣∠HGE=α.
22.解:(1)①如图1,当点P在EF的左侧时,过点P作PH∥AB,则PH∥CD,
∴∠AEP=∠EPH,∠FPH=∠CFP,
∴∠EPF=∠EPH+∠FPH=∠AEP+∠CFP,
当点P在EF的右侧时,过点P作PM∥AB,则PM∥CD,
∴∠AEP+∠EPM=180°,∠PFC+∠MPF=180°,
∴∠AEP+∠EPM+∠PFC+∠MPF=360°,
即,∠AEP+∠EPF+∠PFC=360°;
故答案为:∠AEP+∠EPF+∠PFC=360°;
(2)①∠EPF=100°,则∠EQF=130°,
由(1)知∠PEA+∠PFC=∠EPF=100°,
∵QE,QF分别平分∠PEB和∠PFD,
∴∠PFC+2∠DFQ=180°,∠PEA+2∠BEQ=180°,
故∠DFQ+∠BEQ=130°=∠EQF,
故答案为130°;
②∠EPF+2∠EQF=360°.
理由:如图3,QE,QF分别平分∠PEB和∠PFD,
设:∠BEQ=∠QEP=α,∠QFD=∠PFQ=β,
则∠P=180°﹣2α+180°﹣2β=360°﹣2(α+β),
∠Q=α+β,
即:∠EPF+2∠EQF=360°.