第四章《机械能及其守恒定律》检测题2021-2022学年高一下学期物理粤教版(2019)必修第二册
一、单选题
1.一粒质量为20g的子弹以600m/s的速度飞行与一只质量为80kg的鸵鸟以10m/s的速度奔跑相比( )
A.蛇鸟的动能较大 B.子弹的动能较大 C.二者的动能一样大 D.无法比较它们的动能
2.如图所示,一劲度系数为的轻弹簧左端固定在竖直墙壁上,右端连接置于粗糙水平面的物块。此时弹簧自然伸长,物块位于点。现用外力向左推动物块,当弹簧压缩量为时,使物块静止,然后由静止释放物块,物块到达点时速度刚好为0。已知此过程中向左推动木块的外力所做的功为。则此过程中弹簧的最大弹性势能为( )
A. B. C. D.
3.物体在下列运动中机械能守恒的是( )
A.水平方向上的匀变速直线运动
B.自由落体运动
C.竖直方向上的匀速直线运动
D.物体在斜面上匀速下滑
4.如图所示,斜面固定且光滑。分别用力F1、F2将同一物体由静止起以相同的加速度,从斜面底端拉到斜面顶端。物体到达斜面顶端时,力F1、F2所做的功分别为W1、W2,则( )
A.F1F2,W1>W2 D.F1>F2,W1=W2
5.起重机沿竖直方向匀速吊起重物,在时间内做的功为,则该起重机的功率为( )
A. B. C. D.
6.某同学用恒定的推力推橡皮,匀速擦除桌面上一段长为L的细直线痕迹,该过程中橡皮克服摩擦阻力做功为W。已知橡皮与桌面、痕迹间的动摩擦因数均为μ,不计橡皮重力,则手对橡皮推力的大小为( )
A. B. C. D.
7.质量为4 × 103kg的汽车在水平公路上由静止开始行驶,发动机始终保持输出功率为30kW,设所受阻力保持不变,当汽车行驶30m时即达所能达到的最大速度15m/s,在此过程中( )
A.汽车所受阻力大小为3000N
B.最大速度时汽车所受牵引力大小为2000N
C.汽车行驶时间为3s
D.当汽车的速度为10m/s时的加速度为0.75m/s2
8.一质量为m的小轿车以恒定功率P启动,沿平直路面行驶,若行驶过程中受到的阻力大小不变,能够达到的最大速度为v,当小轿车的速度大小为时,其加速度大小为 ( )
A. B. C. D.
9.“打水漂”是人类最古老的游戏之一,游戏者运用手腕的力量让撇出去的石头在水面上弹跳数次。如图所示,游戏者在地面上以速度抛出质量为m的石头,抛出后石头落到比抛出点低h的水平面上。若以抛出点为零势能点,不计空气阻力,则下列说法正确的是( )
A.抛出后石头落到水平面时的势能为mgh
B.抛出后石头落到水平面时重力对石头做的功为-mgh
C.抛出后石头落到水平面上的机械能为
D.抛出后石头落到水平面上的动能为
10.在一次摩托车跨越壕沟的表演中,摩托车从壕沟的一侧以速度沿水平方向飞向另一侧,壕沟的宽度及两侧的高度如图所示。若摩托车前后轴距为1.6m,不计空气阻力,则下列说法正确的是( )
A.摩托车不能越过壕沟
B.摩托车能越过壕沟,落地瞬间的速度大小为
C.摩托车能越过壕沟,落地瞬间的速度方向与水平地面的夹角的正切值为5
D.在跨越壕沟的过程中,摩托车与人组成的系统机械能不守恒
11.如图所示,光滑斜面底端有一固定挡板,轻弹簧下端连接在挡板上,上端放置一个小物块,小物块处于静止状态。现对小物块施加沿斜面向上的拉力F,使小物块始终沿斜面向上做匀加速直线运动,加速度大小为a,拉力F的最小值为F1,直到物体与弹簧分离,重力加速度为g,弹簧的劲度系数为k,斜面的倾角为θ,弹簧始终在弹性限度内。则下列说法正确的是( )
A.物体的质量为
B.弹簧的最大压缩量为
C.从开始运动到物块与弹簧分离,物块增加的机械能为
D.从开始运动到物块与弹簧分离经过的时间为
二、填空题
12.如图所示,光滑水平面上的物体在水平恒力F的作用下向前运动了一段距离l,速度由v1增加到v2.试推导出力F对物体做功的表达式。
13.某球员定点罚球,篮球刚好水平越过篮筐前沿。已知罚球点离篮筐前沿的水平距离为 4.2m,罚球的出球点与篮球运动最高点间的高度差为0.8 m,篮球质量为 0.6 kg,这次罚球该球员对篮球做的功为38J,不计空气阻力,g取10 m/s2,则篮球从出球点运动到最高点,重力势能增加了______J,篮球在最高点时的动能为______ J。
14.如图所示,处于自然长度的轻质弹簧一端与墙接触,另一端与置于光滑地面上的物体接触,现在物体上施加一水平推力F,使物体缓慢压缩弹簧,当推力大小为20N时,弹簧被压缩5厘米,弹簧的弹力做功_________J,以弹簧处于自然长度时的弹性势能为零,则弹簧的弹性势能为_________J。
三、解答题
15.图是南宁地铁某站的设计方案,车站的路轨BC建得高些,车辆进站时上坡,出站时下坡,坡高为h。车辆到达坡底A点时,便切断电动机电源,让车辆“冲”到坡上。(g取10m/s2)这样设计的主要目的是为了储存能量和释放能量。车辆“冲”到坡上动能会转化成重力势能储存起来;若无坡道,进站时只能靠刹车来减速,此时动能会转化为内能损失掉。
(1)若忽略车辆所受的阻力,当车辆到达A点的速度为6m/s时,切断电动机电源,车辆恰能“冲”到坡上,求坡高h。(A到B机械能守恒)
(2)若上坡时轨道的摩擦阻力是车重的0.1倍,当车辆到达A点的速度为10m/s时,切断电动机电源,车辆到达坡顶B点时的速度为2m/s,求斜坡AB的长度(要求用动能定理解)。
16.AB是竖直平面内的四分之一光滑圆弧轨道,下端B与水平直轨道相切,如图所示。一小物块自A点起由静止开始沿轨道下滑。已知圆轨道半径为R,小物块的质量为m,重力常数为g,求:
(1)小球运动到B点时的速度;
(2)若物块与水平面间动摩擦因数,水平滑到C点停止,求BC间位移s。
17.如图所示,轨道AB部分为光滑的圆弧,半径为R=0.2m,A点与圆心等高。BC部分水平但不光滑,C端固定一轻质弹簧,OC为弹簧的原长。一个可视为质点、质量为m=1kg的物块从A点由静止释放,经弹簧反弹后停在D点(不再滑上轨道AB段)。已知物块与BC之间的动摩擦因数为,BD和DO间距离均为s=0.5m,g=10m/s2,试求:
(1)物块运动到B点的速度vB;
(2)整个过程中弹簧的最大压缩量x1;
(3)已知轻质弹簧劲度系数为k=24N/m,物块向左运动过程中最大的速度为m/s,求此时弹簧的弹性势能Ep。
18.荡秋于是一项很刺激的娱乐项目,人们可以尽情体验因超失重带来的乐趣。如图所示,秋千由踏板和绳构成,人在秋千上的摆动过程可以简化为单摆的摆动,等效“摆球”的质量为m,人蹲在踏板上时摆长为,人站立时摆长为。不计空气阻力和一切摩擦,重力加速度大小为g。
(1)如果摆长为,“摆球”摆到最高点时摆角为θ,求此时摆球加速度的大小;
(2)在没有别人帮助的情况下,人可以通过在低处站起、在高处蹲下的方式使“摆球”摆得越来越高。人蹲在踏板上从最大摆角开始运动,到最低点时突然站起,假定人在最低点站起前后“摆球”摆动速度大小不变,求此后保持站立姿势摆到另一边的最大摆角(可用反三角函数表示)。
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.A
2.B
3.B
4.B
5.C
6.D
7.B
8.A
9.C
10.B
11.D
12.
13. 4.8 33.1
14. -0.5J 0.5J
15.(1)1.8m;(2)30m
16.(1);(2)
17.(1)2m/s;(2)0.25m;(3)J
18.(1)gsinθ;(2)
答案第1页,共2页
答案第1页,共2页