1.3动量守恒定律练习(word版含答案)

文档属性

名称 1.3动量守恒定律练习(word版含答案)
格式 docx
文件大小 1.1MB
资源类型 教案
版本资源 粤教版(2019)
科目 物理
更新时间 2022-03-30 06:58:07

图片预览

文档简介

粤教版(2019)选择性必修一 1.3 动量守恒定律
一、单选题
1.如图所示是一个物理演示实验,图中自由下落的物体A和B被反弹后,B能上升到比初位置高的地方。A是某种材料做成的有凹坑的实心球,质量为m1=0.28 kg.在其顶部的凹坑中插着质量为m2=0.1 kg的木棍B,B只是松松地插在凹坑中,其下端与坑底之间有小空隙。将此装置从A下端离地板的高度H=1.25 m处由静止释放,实验中,A触地后在极短时间内反弹,且其速度大小不变,接着木棍B脱离球A开始上升,而球A恰好停留在地板上,则反弹后木棍B上升的高度为(重力加速度g取10 m/s2)(  )
A.4.05 m B.1.25 m C.5.30 m D.12.5 m
2.下列四幅图所反映的物理过程中, 系统动量守恒的是(  )
甲:在光滑水平面上, 子 弹射人木块的过程中
乙: 前断细线, 弹簧恢复原长的过程中
丙:两球匀速下降, 细线断裂后, 它们在水中运动的过程中
丁:木块沿光滑固定斜面 由静止滑下的过程中
A.只有甲、乙 B.只有甲、丙 C.只有丙、丁 D.只有乙、丁
3.近日,桃子湖路进行修路施工,其中施工过程中使用到了打桩机如图所示,打桩过程可简化为∶重锤从空中某一固定高度由静止释放,与钢筋混凝土预制桩在极短时间内发生碰撞,并以共同速度下降一段距离后停下来。不计空气阻力,则(  )
A.重锤质量越大,撞预制桩前瞬间的速度越大
B.重锤质量越大,预制桩被撞后瞬间的速度越大
C.碰撞过程中重锤对预制桩的作用力大于预制桩对重锤的作用力
D.整个过程中,重锤和预制桩的系统动量守恒
4.下列说法中正确的是(  )
A.动量守恒定律适用于目前为止物理学研究的一切领域
B.汽车的速度越大,刹车位移越大,说明汽车的速度大时,惯性大
C.国际单位制中,伏特是七个基本单位之一
D.匀速圆周运动是匀变速曲线运动
5.建筑施工过程中经常会使用打桩机。如图所示,打桩过程可简化为:重锤从空中某一固定高度由静止释放,与钢筋混凝土预制桩在极短时间内发生碰撞,并以共同速度下降一段距离后停下。不计空气阻力,则(  )
A.整个过程中,重锤和预制桩组成的系统动量守恒
B.碰撞过程中重锤对桩的冲量与桩对重锤的冲量相同
C.重锤质量越大,预制桩被撞后瞬间的速度越大
D.重锤质量越大,碰撞过程重锤动量变化量越小
6.如图所示,A、B两物体质量之比mA:mB=3∶2,原来静止在平板车C上,A、B间有一根被压缩的弹簧,地面光滑。当弹簧突然被释放后,以下系统动量不守恒的是(  )
A.若A、B与C上表面间的动摩擦因数相同,A、B组成的系统
B.若A、B与C上表面间的动摩擦因数相同,A、B、C组成的系统
C.若A、B所受的摩擦力大小相等,A、B组成的系统
D.若A、B所受的摩擦力大小相等,A、B、C组成的系统
7.能量守恒定律是自然界最普遍的规律之一,以下最能体现能量守恒定律的是(  )
A.闭合电路欧姆定律 B.牛顿第一定律 C.动量守恒定律 D.牛顿第三定律
8.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上。某时刻小孩将冰块向斜面体推出,冰块平滑地滑上斜面体,并随即沿斜面滑下。则(  )
A.小孩推出冰块过程,小孩和冰块系统动量不守恒
B.冰块在斜面上运动过程,冰块和斜面体系统水平方向动量守恒
C.冰块从斜面体下滑过程,斜面体动量减少
D.冰块离开斜面时的速率与冲上斜面前的速率相等
9.下列情形中,满足动量守恒条件的是(  )
A.用铁锤打击放在铁砧上的铁块,打击过程中,铁锤和铁块的总动量
B.子弹水平穿过放在光滑桌面上的木块的过程中,子弹和木块的总动量
C.子弹水平穿过墙壁的过程中,子弹和墙壁的总动量
D.棒击垒球的过程中,棒和垒球的总动量
10.如图所示,颠球练习是乒乓球运动员掌握击球的力度、手感和球感的重要方法。运动员练习中将球竖直抛出,让球连续在球拍上竖直弹起和落下。某一次乒乓球由最高点下落18cm后被球拍击起,离开球拍竖直上升的最大高度为22cm。已知球与球拍的作用时间为0.1s,乒乓球的质量为2.7g,重力加速度g取10m/s2,空气阻力恒为乒乓球重力的0.1倍。则(  )
A.运动的全过程球与球拍组成的系统动量守恒
B.球落到球拍前的瞬间动量大小为5.1×10-3 kg·m/s
C.球与球拍作用过程中动量变化量大小为1.08×10-2 kg·m/s
D.球拍对球的平均作用力为乒乓球重力的4倍
11.我国女子短道速滑队多次在国际大赛上摘金夺银,为祖国赢得荣誉。在某次3000m接力赛中,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,猛推甲一把,使甲获得更大的速度向前冲出,如图所示。在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则(  )
A.甲对乙的冲量一定等于乙对甲的冲量
B.甲、乙的动量变化一定大小相等、方向相反
C.甲的动能增加量一定等于乙的动能减少量
D.甲和乙组成的系统机械能守恒
12.如图所示,水平地面上固定一竖直挡板,倾角为θ、质量为M的斜面体右侧用楔子P固定于地面,一质量为m的球体静止于挡板与斜面体之间,设所有接触面均光滑.若将固定斜面体的楔子P取走,小球下落且未脱离斜面的过程中,下列说法正确的是(  )
A.球将做自由落体运动
B.球对竖直挡板的压力相对于球静止时不变
C.球与斜面体组成的系统机械能守恒
D.球与斜面体组成的系统动量守恒
13.某中学实验小组的同学在“验证动量守恒定律”时,利用了如图所示的实验装置进行探究,下列说法正确的是(  )
A.要求斜槽一定是光滑的且斜槽的末端必须水平
B.入射球单独平抛与碰后平抛的释放点的高度可以不同
C.入射球和被碰球的直径必须相等
D.入射球的质量必须与被碰球的质量相等
14.两名小孩用如图所示的装置玩“爬绳游戏”。定滑轮固定在天花板上,不可伸长的软绳跨过定滑轮,两小孩从同一高度由静止开始沿绳向上攀爬,攀爬过程中绳不打滑。不计绳与滑轮的质量和滑轮与轴承之间的摩擦,下列说法正确的是(  )
A.如果一名小孩用力攀爬而另一名小孩没有攀爬,绳子对两名小孩的拉力大小就不相等
B.如果一名小孩用力攀爬而另一名小孩没有攀爬,则用力攀爬的小孩先到达滑轮
C.只要两名小孩的质量相等,即使一个小孩没有攀爬,两人也会同时到达滑轮
D.无论两名小孩的质量是否相等,在攀爬过程中,两小孩与绳子组成的系统动量守恒
15.关于下列运动的说法中正确的是(  )
A.图甲所示撑杆跳运动员在离开地面向上运动的过程中机械能守恒
B.图乙所示的蹦床运动中运动员和蹦床组成的系统动量守恒
C.图丙所示跳伞运动在匀速下降的过程中运动员和降落伞组成的系统机械能守恒
D.图丁所示打台球的运动过程中,两个台球组成的系统在碰撞的一瞬间动量近似守恒
二、填空题
16.一气球连同装置的总质量为M,悬停于空中,某一时刻气球中一个质量为m的零件脱落,零件下落处离地面高为H,不计空气阻力,在零件从开始下落到某位置时,用时恰为全程时间的一半,此时气球速度大小为_______。
17.寻求碰撞中的不变量
(1)质量大的C球与静止的B球碰撞,B球获得的速度______(填“大于”“小于”或“等于”)碰前C球的速度,两球碰撞前后的速度之和______(填“相等”或“不相等”);
(2)由教材第3页小车碰撞实验中记录的数据知:两小车碰撞前后,动能之和______(填“相等”或“不相等”),质量与速度的乘积之和______。
18.小明同学设计了一个用电磁打点计时器验证动量守恒定律的实验,如图甲所示,长木板下垫着小木块以平衡两车的摩擦力,让小车P做匀速运动,然后与原来静止在前方的小车Q相碰并粘合成一体,继续做匀速运动;在小车P后连着纸带,电磁打点计时器所用电源频率为50Hz.
(1)某次实验测得纸带上各计数点的间距如图乙所示,A为运动的起点,则应选_____来计算小车P碰撞前的速度,应选_________来计算小车P和Q碰后的共同速度.(选填“AB”、“BC、“CD”、DE"、“EF"、“FG”)
(2)测得小车P的质量m1=0.4kg,小车Q的质量m2=0.2kg,则碰前两小车的总动量大小为_______kg*m/s,碰后两小车的总动量大小为_________kg*m/s.(计算结果保留二位有效数字)
(3)由本次实验获得的初步结论是________________________________
19.用如图甲所示的装置“探究碰撞中的不变量”实验中:
(1)用游标卡尺测量入射球直径,测量结果如图乙所示,该球直径为________ cm;
(2)实验中小球的落点情况如图丙所示,入射球与被碰球的质量之比mA∶mB=5∶3;则碰撞结束时刻两球动量大小之比pA∶pB=________。
三、解答题
20.如图所示,质量为的物块A和质量为的物块B靠在一起静止在水平面上,A、B均可视为质点,两物块用长为的轻绳连接。现对物块B施加斜向上与水平方向成、大小为的拉力,使物块B开始运动,重力加速度为,两物块与水平面的动摩擦因数均为0.5,则:
(1)从施加拉力到绳子刚好拉直,物块B运动的时间为多少?
(2)若绳子拉直瞬间就保持绷紧状态,两物块一起运动的时间又为多少?
21.如图所示,在空间存在垂直纸面向外的匀强磁场(图中未画出)和方向竖直向上的匀强电场,电场强度为E,磁感应强度为B。在某点无初速释放一个带电液滴a,它运动到最低点处恰与原来静止在该处的带正电液滴b相碰(b原来静止时只受重力和电场力),碰后两液滴合为一体,并沿水平方向做匀速直线运动。已知a、b质量相同,a的电量为b的电量的2倍,a与b间的库仑力可忽略不计。重力加速度为g。试求:
(1)判定a液滴带何种电荷?(不写分析过程)
(2)a、b液滴合为一体后,沿水平方向做匀速直线运动的速度多大?
(3)初始时刻a、b的高度差为多大?
22.一轻质弹簧一端连着静止的物体B,放在光滑的水平面上,静止的物体A被水平速度为v0的子弹射中并且嵌入其中,随后一起向右运动压缩弹簧,已知物体A的质量是物体B的质量的,子弹的质量是物体B的质量的,求:
(1)物体A被击中后的速度大小;
(2)弹簧压缩到最短时B的速度大小。
23.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1=36 km/h正面撞击固定试验台,经时间t1=0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响。
(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;
(2)若试验车以速度v1撞击正前方另一质量m2=1 600 kg、速度v2=18 km/h同向行驶的汽车,经时间t2 =0.16 s两车以相同的速度一起滑行.试求这种情况下试验车受到的撞击力多大?并说明安全气囊是否会爆开。
24.如图,一质量为M=6kg的足够长硬质均匀薄板,沿光滑水平面以v0=4m/s的速度向右匀速运动,在其上方5m高处,有一质量为m=1kg的小球自由下落,落在薄板上与板相撞后,又反弹能达到的最大高度为1.25m,小球和薄板碰撞的时间为0.02s,不计空气阻力及小球旋转,取g= 10m/s2。求:
(1)若薄板光滑,在碰撞过程中,薄板对小球的弹力;
(2)若小球与薄板间的动摩擦因数μ=0.3,小球第一次弹起后薄板的速度大小。
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.A
【解析】
【分析】
【详解】
由题意可知,A、B做自由落体运动,根据
v2=2gH
可得A、B的落地速度的大小
v=
A反弹后与B的碰撞为瞬时作用,A、B组成的系统在竖直方向上所受合力虽然不为零,但作用时间很短,系统的内力远大于外力,所以动量近似守恒,则有
m1v-m2v=0+m2v′2
B上升高度
h=
联立并代入数据得
h=4.05 m
故选A。
2.B
【解析】
【详解】
甲:在光滑水平面上,子弹射入木块的过程中,系统所受外力之和为零,系统动量守恒
乙:剪断细线,弹簧恢复原长的过程,墙壁对滑块有作用力,系统所受外力之和不为零,系统动量不守恒
丙:两球匀速下降,木球与铁球的系统所受合力为零,细线断裂后,它们的受力情况不变,系统的合外力仍为零,所以系统的动量守恒
丁:木块下滑过程中,由于木块对斜面的压力,导致斜面始终受挡板作用力,系统动量不守恒
故守恒的有甲、丙
故选B。
3.B
【解析】
【详解】
A.根据
可得
重锤与预制桩撞前瞬间的速度大小与物体质量无关,A错误;
B.碰撞过程中,动量守恒
可得
因此重锤质量越大,预制桩被撞后瞬间的速度越大,B正确;
C.根据牛顿第三定律,碰撞过程中重锤对预制桩的作用力大小等于预制桩对重锤的作用力,C错误;
D.整个过程中,由于受到阻力和重力作用,重锤和预制桩组成的系统动量不守恒,D错误。
故选B。
4.A
【解析】
【详解】
A.动量守恒定律适用于目前为止物理学研究的一切领域,只要满足动量守恒条件即可,A正确;
B.惯性大小只和质量有关,与速度大小无关,B错误;
C.国际单位制中,伏特是导出单位,不是基本单位,C错误;
D.匀速圆周运动由于加速度方向始终指向圆心,时刻在变,故匀速圆周运动属于非匀变速曲线运动,D错误。
故选A。
5.C
【解析】
【详解】
A.整个过程中,碰撞后以共速减速下降,重锤和预制桩受到向上的合力,所以系统的动量不守恒,故A错误;
B.碰撞过程中重锤对桩的冲量与桩对重锤的冲量大小相同,方向相反,故B错误;
C.自由下落过程获得的动量越大,碰撞过程时间极短,可认为重锤与桩的动量守恒,有
重锤与桩预制桩被撞后瞬间的速度越大,故C正确;
D.碰撞过程重锤动量变化量大小为
重锤质量越大,碰撞过程重锤动量变化量越大,故D错误。
故选C。
6.A
【解析】
【详解】
A.如果A、B与C上表面间的动摩擦因数相同,弹簧被释放后,A、B分别相对C向左、向右滑动,它们所受的滑动摩擦力FA向右,FB向左,由于mA:mB=3:2,所以FA:FB=3∶2,则A、B组成的系统所受的外力不为零,其动量不守恒,A符合题意;
BD.因为地面光滑,对A、B、C组成的系统合外力等于零,A、B、C组成的系统动量守恒,BD不符合题意;
C.若A、B所受的摩擦力大小相等,A、B组成的系统合外力等于零,A、B组成的系统动量守恒,C不符合题意;
故选A。
7.A
【解析】
【详解】
A.闭合电路的欧姆定律
即电源的功率等于输出功率与内阻功率之和,直接体现了能量守恒,故A正确;
B.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态,不能体现能量守恒,故B错误;
C.动量守恒定律:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,不能体现能量守恒,故C错误;
D.牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上,不能体现能量守恒,故D错误。
故选A。
8.B
【解析】
【详解】
A.小孩推出冰块过程,系统合外力为0,小孩和冰块系统动量守恒。故A错误;
B.冰块在斜面上运动过程,冰块和斜面体系统水平方向合外力为0,动量守恒。故B正确;
C.冰块从斜面体下滑过程,冰块对斜面体做功,速度增加,斜面体动量增加。故C错误;
D.冰块在斜面体上滑和下滑过程,斜面体对冰块做负功,速度减小,冰块离开斜面时的速率与冲上斜面前的速率不相等。故D错误。
故选B。
9.B
【解析】
【分析】
【详解】
A .竖直方向合力不为零,动量不守恒,A错误;
B.子弹水平穿过光滑桌面上木块的过程中,系统合外力为零,所以子弹和木块的总动量守恒,故B正确;
C.墙壁受地面的作用力,系统合外力不为零,总动量不守恒,故C错误;
D.棒受人手的作用力,故合外力不为零,总动量不守恒,故D错误;
故选B。
10.C
【解析】
【分析】
【详解】
A.运动的过程中,球与球拍组成的系统,在竖直方向上受到了重力和人手的作用力,其合力不为零,所以系统的动量不守恒,故A错误;
B.球落到球拍前的瞬间,其速度为
动量大小为
故B错误;
C.球与球拍作用后的瞬间其速度大小为
所以作用过程中动量变化量的大小为
故C正确;
D.根据动量定理,可得球拍对球的平均作用力为
小球所受的重力为
倍数关系为
故D错误。
故选C。
11.B
【解析】
【分析】
【详解】
A.因为冲量是矢量,甲对已的作用力与乙对甲的作用力大小相等方向相反,故冲量大小相等方向相反,A错误;
B.两人组成的系统合外力为零,系统的动量守恒,根据动量守恒定律可知,系统动量变化量为零,则甲、乙的动量变化一定大小相等且方向相反,B正确;
C.甲、乙间的作用力大小相等,不知道甲、乙的质量关系,不能求出甲乙动能变化关系,无法判断做功多少,也不能判断出二者动能的变化量,C错误;
D.在乙推甲的过程中,乙的肌肉对系统做了功,甲和乙组成的系统机械能不守恒, D错误。
故选B。
12.C
【解析】
【分析】
【详解】
A.小球下落过程中,受到斜面体以及挡板的作用力,则不能做自由落体运动,A错误;
B.球静止时,竖直挡板对球的支持力和斜面体对球的支持力的合力等于球的重力。球下落过程中,有竖直向下的加速度,系统处于失重状态,由牛顿运动定律知竖直挡板对球的支持力和斜面体对球的支持力的合力小于球的重力,所以球对竖直挡板压力相对于球静止时减小,B错误;
C.因为过程中只有球的重力对系统做功,则球体与斜面体组成系统机械能守恒,C正确;
D.球与斜面体组成的系统水平方向受挡板的弹力作用,水平方向动量不守恒;竖直方向受到的合外力也不为零,竖直方向动量也不守恒,则系统的动量不守恒,D错误。
故选C。
13.C
【解析】
【分析】
【详解】
A.题述实验中,是通过平抛运动的基本规律求解碰撞前后的速度的,对斜槽是否光滑没有要求,但必须保证每次小球都要从斜槽的同一高度由静止开始下滑,且做平抛运动,因此轨道的末端必须水平,A错误;
B.要保证碰撞前入射球的速度相同,入射球要从斜槽的同一高度由静止释放,B错误;
C.为了保证两小球发生一维正碰撞,要求入射球和被碰球的直径必须相等,C正确;
D.在做题述实验时,要求入射球的质量大于被碰球的质量,防止入射球碰后反弹或静止,D错误。
故选C。
14.C
【解析】
【详解】
A.同一根绳子上的力是相同的,所以绳子对两名小孩的拉力大小相等,故A错误;
BC.设绳子上的力为F,无论小孩是否攀爬,小孩受到绳子上的拉力都为F,根据牛顿第二定律,对左边的A小孩有
解得
对右边的B小孩有
解得
比较可知,当A小孩的质量较大时,A小孩的加速度小,根据可知,A小孩的运动时间长,则B小孩先到达滑轮;反之当A小孩的质量小时,则A小孩先到达滑轮;当两小孩质量相等时,加速度相同,则运动时间相同,同时到达滑轮,故B错误,C正确;
D.当把两小孩与绳子组成的整体看做系统时,合外力不为零,所以系统动量不守恒,故D错误。
故选C。
15.D
【解析】
【分析】
【详解】
A.若考虑运动员自身的散热与内力做功问题,则只要有人参与的系统机械能都不守恒,若不考虑运动员自身的散热与内力做功问题,则图甲所示撑杆跳运动员在离开地面向上运动的过程中由于还受到杆的作用力,机械能不守恒;A错误;
B.图乙中因蹦床和运动员系统受到的合外力不为零,故运动员和蹦床组成的系统动量不守恒,B错误;
C.图丙中跳伞运动在匀速下降的过程中受空气阻力作用运动员和降落伞组成的系统机械能不守恒,C错误;
D.图丁所示打台球的运动过程中,两个台球组成的系统在碰撞的一瞬间内力远大于外力,系统动量近似守恒,D正确。
故选D。
16.
【解析】
【分析】
【详解】
[1]根据公式可得,零件落地时的速度为
在零件从开始下落到某位置时,用时恰为全程时间的一半,可知在该位置处速度为
以零件与气球组成的系统为研究对象,零件脱落后,合力为零,系统动量守恒,则有
解得
17. 大于 不相等 不相等 基本不变
【解析】
【详解】
[1]本题出现在动量部分第一节,由实验情景可得B球获得的速度大于碰前C球的速度;
[2]实验情景可得两球碰撞前后的速度之和不相等;
[3]两小车碰撞前后,动能之和不相等;
[4]质量与速度的乘积之和基本不变。
18. BC EF 0.8 0.79 在误差允许范围内,系统动量守恒
【解析】
【详解】
(1)小车P碰前做匀速运动,应选点迹均匀的计数点来进行计算,AB和BC段点迹都均匀,但由于A点为运动的起点,故选择运动了一段时间后的BC段来计算小车P碰撞前的速度;碰撞过程是一个变速运动的过程,小车P和Q碰后的共同运动时做匀速直线运动,DE段的后半段点迹已经均匀,故选EF段来计算碰后共同的速度;
(2)碰前的速度小车P的速度大小,小车Q的速度为零,故碰前两小车的总动量大小,碰撞后,小车P和Q成为一个整体,速度大小为,动量大小;
(3)根据碰撞前后的动量关系可知:在误差允许的范围内,系统动量守恒.
19. 1.16 1∶2
【解析】
【详解】
(1) [1]11 mm+0.1 mm×6=11.6 mm=1.16 cm
(2) [2]碰撞结束后,球A落在M点,球B落在N点,因为水平位移之比xA∶xB=15∶50=3∶10,又因为高度一样,所以平抛运动的时间相等,则vA∶vB=3∶10,根据
p=mv

pA∶pB=1∶2
20.(1)2s;(2)0.5s
【解析】
【分析】
【详解】
(1)拉力作用在物块B上后,设物块B运动的加速度大小为
根据牛顿第二定律
解得
设当绳子刚拉直时,物块运动的时间为
根据运动学公式有
解得
(2)当细绳刚拉直时,物块B的速度
绳子绷紧过程,A、B两物块动量守恒,设绷紧后一瞬间,A、B两物块的共同速度为
根据动量守恒定律有
解得
设此后两物块一起运动的加速度大小为,根据牛顿第二定律有
解得
两物块一起运动的时间
21.(1)带负电;(2);(3)
【解析】
【分析】
【详解】
(1)带负电
(2)之前静止:
、合体后:
(3)释放到、相碰
,相碰时动量守恒,
22.(1); (2)
【解析】
【详解】
(1)设子弹射入A后,A与子弹的共同速度为v1,由动量守恒定律可得
解得
(2)当AB速度相等时,弹簧的压缩量最大,设此时A、B的共同速度为v,取向右为正方向,对子弹、A、B组成的系统,由动量守恒定律可得
解得
23.(1)I0=1.6×104 N·s;1.6×105 N;(2)F=2.5×104 N;安全气囊不会爆开
【解析】
【分析】
【详解】
(1)v1=36 km/h=10 m/s,取速度v1 的方向为正方向,由动量定理有
将已知数据代入上式得
由冲量定义有
将已知数据代入得
(2)设试验车和汽车碰撞后获得共同速度v,以v1的方向为正方向,由动量守恒定律有
对试验车,由动量定理有
将已知数据代入得
可见F<F0,故试验车的安全气囊不会爆开。
24.(1),方向竖直向上;(2)
【解析】
【详解】
(1)小球自由下落的高度为,根据自由落体运动规律可知小球与薄板碰撞前瞬间的速度大小为
碰后小球竖直上抛的高度为,根据竖直上抛运动规律可知小球与薄板碰撞后瞬间的速度大小为
在碰撞过程中,设薄板对小球的弹力大小为F,以竖直向上方向为正方向,由动量定理得
解得
方向竖直向上。
(2)在碰撞过程中,滑动摩擦力对小球的冲量大小为
设小球第一次弹起后的水平速度大小为v,由动量定理得
设小球第一次弹起后薄板的速度大小为v′,小球和薄板组成的系统在水平方向上动量守恒,即
解得
答案第1页,共2页
答案第1页,共2页