1.3 二元一次方程组的应用
第1课时 二元一次方程组的应用(一)
课题 第1课时 二元一次方程组的应用(一) 授课人
教学目标 知识技能 1.会根据行程问题、百分比问题情境及条件,列出方程组,解行程问题及百分比问题;2.使学生掌握运用方程组解决实际问题的一般步骤.
数学思考 让学生经历和体验列方程组解决实际问题的过程,进一步体会方程组是刻画现实世界的有效数学模型.
问题解决 通过列方程组解应用题,培养学生的数学应用能力,增强列方程解决实际问题的能力,进一步提高学生解二元一次方程组的技能.
情感态度 进一步丰富学生学习数学的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.
教学重点 列二元一次方程组解行程问题和百分比问题.
教学难点 根据题意找出等量关系,列出方程.
授课类型 新授课 课时
教具 多媒体课件
(续表)
教学活动
教学步骤 师生活动 设计意图
回顾 问题1:解二元一次方程组的基本思想是________,解法有________.问题2:七年级上册我们学习了列一元一次方程解应用题,那么你还记得它的一般步骤吗? 通过复习旧知,为本节课的学习做好铺垫,扫除知识障碍.
活动一:创设情境导入新课 【课堂引入】图1-3-3《孙子算经》大约产生于一千五百年前,现在传本的《孙子算经》共三卷,其中卷下第31题,可谓是后世“鸡兔同笼”题的始祖,书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”问题1:“上有三十五头”的意思是什么?“下有九十四足”呢?问题2:你能解决这个有趣的问题吗? 以数学历史故事为背景,激发学生的爱国热情,感受数学在生活中的应用,吸引学生的注意力,激发学生的学习兴趣,同时为本课的学习做好铺垫.
活动二:实践探究交流新知 【探究1】 鸡免同笼问题①一元一次方程解法(实物投影).解:设有鸡x只,则有兔(35-x)只.根据题意,得2x+4(35-x)=94.2x+140-4x=94.-2x=-46.x=23.35-x=12.答:有鸡23只,兔12只.②二元一次方程组解法(实物投影).解:设有鸡x只,兔y只.根据题意,得①×2,得2x+2y=70,③②-③,得2y=24,y=12.把y=12代入①,得x=23.答:有鸡23只,兔12只.你能比较两种解法的优劣吗?【探究2】 行程问题情境:小琴去县城要经过外祖母家,第一天下午她从家走到外祖母家,第二天上午,她从外祖母家出发,匀速前进,走了2小时和5小时后,离她自己家的距离分别为13千米、25千米.你能算出她的速度吗?能算出她家与外祖母家相距多远吗?问题1:你能画线段表示本题的数量关系吗?问题2:填空:(用含s,v的代数式表示)设小琴的速度是v千米/时,她家与外祖母家相距s千米,第二天她走2小时的路程是________千米,此时她离家距离是________千米;她走5小时的路程是________千米,此时她离家的距离是________千米.【探究3】 百分比问题情境:两块合金,一块含金95%,另一块含金80%,将它们与2克纯金熔合得到含金90.6%的新合金25克,计算原来两块合金的重量.问题1:设原来含金95%的合金为x克,含金80%的合金为y克.熔合后新合金中的含金量为25×90.6%,熔合前的总含金量为95%x+80%y+2,因此可以列出方程95%x+80%y+2=25×90.6%.问题2:两块合金的重量,加上2克纯金的重量等于新合金的重量,据此你能列出什么样的方程呢? 引导学生体会两种解法的优点和不足,为学生建立方程组模型做铺垫.对于二元一次方程组的解法,如果学生学习存在困难,可以借助微视频讲解,或者教师设计表格,帮助学生分析等量关系.
活动三:开放训练体现应用活动三:开放训练体现应用 【应用举例】例1 甲、乙两人都从A地到B地,甲步行,乙骑自行车,如果甲先走6千米乙再动身,则乙走0.75小时后恰好与甲同时到达B地;如果甲先走1小时,那么乙用0.5小时可追上甲,求两人的速度及AB两地的距离.变式训练1.两码头相距280千米,一船顺流航行需14小时,逆流航行需20小时,求船在静水中的速度和水流的速度.2.从小华家到姥姥家有一段上坡路和一段下坡路.星期天,小华骑自行车去姥姥家,如果保持上坡每小时行3 km,下坡每小时行5 km,她到姥姥家需要行66分钟,从姥姥家回来时需要行78分钟才能到家.那么,从小华家到姥姥家上坡路和下坡路各有多少千米,姥姥家离小华家有多远?例2 革命老区百色某芒果种植基地,去年结余500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元. 巩固用列二元一次方程组解应用题的思想,掌握列二元一次方程组解应用题的方法和步骤.
【拓展提升】例3 某铁路桥长1000 m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1 min,整列火车完全在桥上的时间共40 s.求火车的速度和长度.例4 从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米.那么从甲地到乙地需54分,从乙地到甲地需42分,从甲地到乙地全程是多少千米? 通过练习,使学生熟练掌握解决问题的方法,提升解决问题的能力.
活动四:课堂总结反思 【当堂训练】1.甲、乙二人练习跑步,如果甲让乙先跑10米,甲跑5秒钟就可追上乙,如果甲让乙先跑2秒钟,那么甲跑4秒钟就追上乙.若设甲、乙每秒钟分别跑x米,y米,则列出方程组应为( )A. B.C. D.2.一轮船顺流航行的速度为a千米/时,逆流航行的速度为b千米/时,那么船在静水中的速度为多少千米/时( )A.a+b B.(a-b) C.(a+b) D.a-b3.甲、乙两人从相距36千米的两地相向而行,如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇.设甲每小时走x千米,乙每小时走y千米,可列出方程组________________. 通过设置当堂训练,进一步巩固所学新知,同时检测学习效果,做到堂堂清.
框架图式总结,更容易形成知识网络.
【教学反思】①[授课流程反思]通过古代的“鸡兔同笼”问题,进行列二元一次方程组解决实际问题的训练,这样,一方面在列方程组的建模过程中,强化了方程思想,培养了学生列方程(组)解决实际问题的意识和应用能力.另一方面,将解方程组的技能训练与实际问题的解决融为一体,在实际问题的解决过程中,进一步提高学生解方程组的技能.②[讲授效果反思]通过师生互动,让学生体会数学的实用性,掌握列方程组解应用题的思考方法及解题步骤.③[师生互动反思]在建立方程思想的过程中采用了循序渐进的思路,由算术方法到一元一次方程再到二元一次方程组,遵循了学生的思维梯度,逐步建立起学生用二元一次方程组解应用题的思想,充分感受它的优点和思维的简化.④[习题反思]好题题号__________________________________________错题题号__________________________________________ 反思,更进一步提升.
活动四:课堂总结反思 1.3 二元一次方程组的应用
第2课时 二元一次方程组的应用(二)
课题 第2课时 二元一次方程组的应用(二) 授课人
教学目标 知识技能 1.会根据问题情境及条件列出分段计费及盈不足等问题的二元一次方程组,并能检验解的合理性;2.通过解决实际问题进一步体会方程建模的过程和作用.
数学思考 经历和体验列方程组解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.
问题解决 让学生进一步经历和体验列方程组解决实际问题的过程,培养学生的数学应用能力.
情感态度 通过对问题的解决,进一步认识数学与现实世界的密切联系,培养学生必要的经济意识,增强他们节约成本、有效合理利用资源的意识,培养学生的数学应用意识,提高学习数学的趣味性、现实性、科学性.
教学重点 抽象出数学模型,引导学生参与讨论和探究问题.
教学难点 将实际问题转化成二元一次方程组的数学模型.
授课类型 新授课 课时
教具 多媒体课件
教学活动
教学步骤 师生活动 设计意图
活动一:创设情境导入新课 【课堂引入】1.某旅行社在黄金旅游期间为一个旅游团安排住宿,若每间宿舍住5人,则有4人住不下;若每间宿舍住6人,则有一间只住了4人,且空两间宿舍,那么该旅游团有多少人?有多少间宿舍?图1-3-72.上节课我们学习了列二元一次方程组解应用题的一般步骤,并学习了行程问题,百分比问题的解决思路,这节课我们一起来学习分段计费、盈不足问题的解决方法. 利用同学们熟悉的生活中的问题去激发学生学习本节课的兴趣,导入课题.
活动二:实践探究交流新知 【探究1】 分段计费问题某城市规定:出租车起步价所包含的路程为0~3 km,超过3 km的部分按每千米另收费.甲说“我乘这种出租车走了11 km,付了17元.”乙说:“我乘这种出租车走了23 km,付了35元.”请你算一算:出租车的起步价是多少元?超过3 km后,每千米的车费是多少元?阅读后思考回答:问题1:由甲乘车付费可以得到一个什么样的等量关系?由乙乘车付费又可以得到一个什么样的等量关系?问题2:在这两个等量关系中,未知量有几个?各小组成员共同讨论,探讨已知与未知,并探讨设元的方法.问题3:你能通过设元列出二元一次方程组吗?试试看.解:设出租车的起步价是x元,超过3 km后每千米收费y元.根据等量关系,得解得答:这种出租车的起步价是5元,超过3 km后每千米收费1.5元.归纳总结:分段计费的常见等量关系是:总费用=各分段费用之和.【探究2】 盈不足问题把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少名学生?问题1:“若每人分3本,则剩余20本”,你怎样理解这句话?如果设这个班有x名学生,根据这句话,你能用含x的代数式表示书本数吗?同样地,“若每人分4本,则还缺25本”又如何理解?你能用含x的代数式表示书本数吗?问题2:你能用列一元一次方程求解这道题吗?试试看.问题3:如果需要列二元一次方程组求解本题,你认为应该如何设元?如何列方程组?小组内合作,共同交流,提出各自的解法,然后讨论.归纳总结:盈不足问题常见的处理方法是:用一个未知数的代数式表示另一个量,再根据同一个量的两种不同表示方法,列一元一次方程求解;也可直接列二元一次方程组求解.解法一:设这个班有x名学生.根据题意,得3x+20=4x-25.解得x=45.答:这个班共有45名学生.解法二:设这个班有x名学生,图书一共有y本.根据题意,得解得答:这个班共有45名学生. 通过合作探究,使学生初步学会设计适当的图表,帮助理清题目中的数量关系,从而提高学生分析问题和解决问题的能力.在实际问题的解决过程中,进一步提高学生解方程组的技能.
活动三:开放训练体现应用活动三:开放训练体现应用 【应用举例】例1 用一根绳子环绕一个圆柱形油桶,若环绕油桶3周,则绳子还多4尺;若环绕油桶4周,则绳子又少了3尺.这根绳子有多长?环绕油桶一周需要多少尺?解:设这根绳子长为x尺,环绕油桶一周需y尺.由题意,得解得答:这根绳子长为25尺,环绕油桶一周需7尺.变式训练1.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.则敬老院有多少位老人?2.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,请问共有多少个小朋友?( )A.4个 B.5个 C.10个 D.12个3.为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”.电力公司规定:居民家庭每户每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭每户每月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家2015年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时.(2)若6月份小张家预计用电130千瓦时,请预计小张家6月份应上缴的电费.解:(1)设“基本电价”为x元/千瓦时,“提高电价”为y元/千瓦时.根据题意,得解得答:“基本电价”为0.6元/千瓦时,“提高电价”为1元/千瓦时.(2)80×0.6+(130-80)×1=98(元).答:预计小张家6月份上缴的电费为98元. 通过应用举例,及时反馈学生的学习情况,并及时地查缺补漏,进一步提升教学效果.进一步体会此类问题的解决方法,并能灵活解题.
解:(2)由(1)可列方程组解得3+6=9(千米).答:他家到海滨9千米. 除巩固课堂所学知识外,也给学生创造了一个知识迁移及拔高的机会,使学生各抒己见,并培养学生分析问题、解决问题的能力.
活动四:课堂总结反思 【当堂训练】七年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排.这间会议室共有座位多少排(C)A.14 B.13 C.12 D.152.若某班购买一筐桃,每人分6个,则少6个,每人分5个,则多5个,则班级人数与桃数各是(B)A.22,120 B.11,60 C.10,54 D.8,423.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何”.诗句中谈到的鸦为__20__只,树为__5__棵. 练习题的设置一方面加强学生对知识的掌握,从而提高对知识的运用能力;另一方面可以查缺补漏,为以后教师的教和学生的学指明方向.
【课堂总结】布置作业:1.教材P18练习T1,T2.2.教材P18习题1.3A组T3,B组T7. 布置作业,专题突破.
活动四:课堂总结反思 【 框架图式总结,更容易形成知识网络.
【教学反思】①[授课流程反思]从生活中常见的事例入手,引起学生的注意,同时也为学生今后的学习做铺垫.②[讲授效果反思]通过设问的形式,引导学生理解题意,帮助学生分清已知和未知,掌握本课时内容,突破难点.③[师生互动反思]课堂上教师真正发挥学生的主体地位,特别是遇到较难解决的问题时,可让同学们分组探究、归纳总结,同时,加强学生之间的相互评价.④[习题反思]好题题号____________________________________________错题题号____________________________________________