一元一次方程(6.3)同步测试
一、选择
1.设某数是x,若比它的2倍大3的数是8,可列方程为( )
A. 2x﹣3=8 B. 2x+3=8 C. x﹣3=8 D. x+3=8
2.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( ).
A.
B.
C.
D.
3.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?” 若设共有x个苹果,则列出的方程是 ( )
4.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6 1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( )
A.1.2×0.8x+2×0.9(60+x)=87 B.1.2×0.8x+2×0.9(60+x)=87
C.2×0.9x+1.2×0.8(60+x)=87 D.2×0.9x+1.2×0.8(60+x)=87
5.已知一项工程,甲单独完成需5天,乙单独完成需要8天,现甲乙合作完成需要多少天?设甲乙合作需要x天完成,则列方程为( )
A. (+)x=1 B. (﹣)x=1 C.= D. 5+8=x
6.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多100t;如用新工艺,则废水排量比环保限制的最大量少50t.新、旧工艺的废水排量之比为3:4,求两种工艺的废水排量各是多少?若设新、旧工艺的废水排量分别为3xt和4xt,则依题意列方程为( )
A.3x+50=4x﹣100 B.3x﹣50=4x+100
C.3x+50=4x+100 D.3x﹣50=4x﹣100
7.某小区实行“阶梯水价”收费,若每户用水不超过10吨时,每吨收费a元;超过10吨,超过部分每吨加收1元,一用户12月份用水14吨,缴纳水费32元,根据题意列方程为( )
A.10a+4(a+1)=32 B.10a﹣4(a+1)=32
C.10(a+1)=32 D.14(a+1)﹣4=32
8.现用90立方米木料制作桌子和椅子,已知一张桌子配4张椅子,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为( )
A.4x=5(90﹣x) B.5x=4(90﹣x)
C.x=4(90﹣x)×5 D.4x×5=90﹣x
二、填空
9.某商店销售一批服装,每件标价150元,打8折后出售,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是_______.
10.一个两位数,个位上的数字是x,十位上的数字比个位上的数字大2,且这个两位数与个位上的数字的差为50,由此列出方程为______________.
11、方程(a﹣2)+3=0是关于x的一元一次方程,则a=_______
12、下列式子是一元一次方程的是___________(填序号)
13.甲乙两船航行于A、B两地之间,甲船由A到B的航速为35km/h,乙船由B到A的航速为25km/h,若甲船先行2小时,两船在距B地120km处相遇.若设两地距离为x千米,则可列方程为 .
14.如图,内、外两个四边形都是正方形,阴影部分的宽为2,且面积为40,则内部小正方形的面积是 .
三、解答
15.整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,再增加2人和他们一起做8h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?
16.某工厂甲乙两车间生产汽车零件,四月份甲乙两车间生产零件数之比是4:7,五月份甲车间提高生产效率,比四月份提高了25%,乙车间却比四月份少生产50个,这样五月份共生产1150个零件.求四月份甲乙两车间生产零件个数各多少个.
17.在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.
(1)七年级2班有男生、女生各多少人?
(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗?如果不配套,那么男生应向女生支援多少人时,才能使每小时剪出的筒身与筒底配套.
18.某水果销售点用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:
进价(元/千克) 售价(元/千克)
甲种 5 8
乙种 9 13
(1)这两种水果各购进多少千克?
(2)若该水果店按售价销售完这批水果,获得的利润是多少元?
19.周末小明和爸爸准备一起去商场购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商场都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价30元,茶杯每把定价5元,且两家都有优惠.甲商场买一送一大酬宾(买一把茶壶送一只茶杯);乙商场全场九折优惠.小明的爸爸需茶壶5把,茶杯若干只(不少于5只).当去两家商场付款一样时,求需要购买茶杯的数量.
参考答案
1.B
2.B;
3.C
4.B
5.A;
6.A;
7.A.
8.A.
9. 5x=35%x﹣28
10.2×5+2x=4×5+x
11.1375×0.9=x(1+20%)
12.4 13. =+2 14.81
15.解:设应先安排x人工作,
根据题意得:
解得:x=2,
答:应先安排2人工作.
16.解:设4月份甲乙两车间生产零件数分别为4x个、7x个,
由题意得,4x(1+25%)+7x﹣50=1150,
解得:x=100,
4x=400,7x=700.
答:4月份甲乙两车间生产零件数400个,700个.
17.解:(1)设七年级2班有男生有x人,则女生有(x+2)人,由题意得:
x+x+2=50,
解得:x=24,
女生:24+2=26(人),
答:七年级2班有男生有24人,则女生有26人;
(2)男生剪筒底的数量:24×120=2880(个),
女生剪筒身的数量:26×40=1040(个),
因为一个筒身配两个筒底,2880:1040≠2:1,
所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,
设男生应向女生支援y人,由题意得:
120(24﹣y)=(26+y)×40×2,
解得:y=4,
答:男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.
18.解:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:
5x+9(140﹣x)=1000,
解得:x=65,
∴140﹣x=75.
答:购进甲种水果65千克,乙种水果75千克;
(2)3×65+4×75=495(元)
答:获得的利润为495元.
19.解:设购买茶杯x只,依题意得
30×5+5×(x-5)=(30×5+5x)×0.9
5x+125=4.5x+135,
解得:x=20.
答:购买茶杯20只时,两种优惠办法付款一样.