九年级下册数学第三章圆单元测试二
学校:___________姓名:___________班级:___________考号:___________
一、选择题
1.如图,四边形OABC为菱形,点A、B在以O为圆心的弧上,若OA=2,∠1=∠2,则扇形ODE的面积为【 】
A. B. C. D.
2.如图是某座天桥的设计图,设计数据如图所示,桥拱是圆弧形,则桥拱的半径为( )
A.13m B.15m C.20 m D.26m
3.如图是一个废弃的扇形统计图,小华利用它的阴影部分来制作一个圆锥,则这个圆锥的底面半径是( )
A. B. C. D.
4.已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比为
A. 1∶2 B. 2∶1 C. 1∶4 D.4∶1
5.如图,将半径为的圆形纸片折叠后,圆弧恰好经过圆心,则折痕的长为( )
A. B.
C. D.
6.如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是【 】
A.内含 B.相交 C.相切 D.外离
7.如图,半径为1的圆中,圆心角为120°的扇形面积为 ( )
(A) (B) (C) (D)
8.如图所示,已知△ACD和△ABE都内接于同一个圆,则∠ADC+∠AEB+∠BAC=【 】
A.90° B.180° C.270° D.360°
9. 如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6。则⊙O的半径为( )
A.6 B.13 C. D.
10.如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于( )
A. B. C. D.
二、填空题
11.如下图所示的图案中,弧=弧=弧=弧=60°,绕中心O至少旋转________度后,能与原来的图案重合。
12.若扇形的弧长为,圆心角为,则该扇形的半径为 .
13.如图,AB为⊙O的直径,弦CD⊥AB, E为弧BC上一点,若∠CEA=28°,则∠ABD= .
14.在锐角三角形ABC中,BC=,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是 。
15.如图同心圆,大⊙O的弦AB切小⊙O于P,且AB=6,则圆环的面积为 。
16.如图,⊙O的半径为3cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以cm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为 s时,BP与⊙O相切.
三、计算题
17.1471年,德国数学家米勒提出了雕塑问题:假定有一个雕塑高AB=3米,立在一个底座上,底座的高BC=2.2米,一个人注视着这个雕塑并朝它走去,这个人的水平视线离地1.7米,问此人应站在离雕塑底座多远处,才能使看雕塑的效果最好,所谓看雕塑的效果最好是指看雕塑的视角最大,问题转化为在水平视线EF上求使视角最大的点,如图:过A、B两点,作一圆与EF相切于点M,你能说明点M为所求的点吗?并求出此时这个人离雕塑底座的距离?
18.“创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚.已知图纸上的图形是某建筑物横断面的示意图,它是以圆的半径所在的直线为对称轴的轴对称图形,是与圆的交点.
(1)请你帮助小王在图8中把图形补画完整;
(2)由于图纸中圆的半径的值已看不清楚,根据上述信息(图纸中是坡面的坡度),求的值.
四、解答题
19.如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标是(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,求C的坐标.(10分)
?
20.如图,AB是⊙O的弦,AB=4,过圆心O的直线垂直AB于点D,交⊙O于点C和点E,连接AC、BC、OB,cos∠ACB=,延长OE到点F,使EF=2OE.
(1)求⊙O的半径;
(2)求证:BF是⊙O的切线.
21.如图所示,以平行四边形ABCD的顶点A为圆心,AB为半径作圆,交AD,BC于E,F,延长BA交⊙A于G,求证:弧GE=弧EF
22.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆.设点运动了秒,求:
(1)点的坐标(用含的代数式表示);
(2)当点在运动过程中,所有使与菱形的边所在直线相切的的值.
23.如图,内接于⊙O,为⊙O的直径,,,过点作⊙O的切线与的延长线交于点,求的长.
24.如图,AB是⊙O的直径,点C在BA的延长线上,CA=AO,点D在⊙O上,∠ABD=30°.
⑴求证:CD是⊙O的切线;
⑵若点P在直线AB上,⊙P与⊙O外切于点B,与直线CD相切于点E,设⊙O与⊙P的半径分别为r与R,求的值.
25.如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与轴相交于点A,与轴相交于点B。
(1)点P在运动时,线段AB的长度页在发生变化,请写出线段AB长度的最小值,并说明理由;
(2)在⊙O上是否存在一点Q,使得以Q、O、A、P为顶点的四边形时平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由。
参考答案
1.A。
2.A
3.A
4.C
5.C
6.D
7.C
8.B。
9.C
10.C
11.
12.
13.28°
14.解:(1)证明:在等腰梯形ABCD中,AB=DC,∴∠B=∠C。
∵OE=OC,∴∠OEC=∠C,∴∠B=∠OEC。∴OE∥AB。
(2)证明:过点O作OF⊥AB于点F,过点O作OG∥BC交AB于点G。
∵AB=DC,∴∠B=∠C。
∴OC=OE,∴∠OEC=∠C。∴∠OEC=∠B。∴OE∥GB。
又∵EH⊥AB,∴FO∥HE。∴四边形OEHF是平行四边形。∴OF=EH。
又∵EH=CD,∴OF=CD,即OF是⊙O的半径。
∴AB是⊙O的切线。
(3)连接DE。
∵CD是直径,∴∠DEC=90°。∴∠DEC=∠EHB。
又∵∠B=∠C,∴△EHB∽△DEC。∴。
∵BE=4BH,设BH=k,则BE=4k,
,
∴CD=2EH=2。∴。
15.
16.1或5
17.理由略, 距离为米
18.(1) ……………………………………2分
(2)由已知得 OC⊥DE ∴∠CHE=90°
∵ ∴ ……………………3分
设CH=4K EH=3K ∵CE=5
∴ ∴K=1
∴CH=4 EH=3 …………………………………5分
∴DH=7 OD=7+r OH=4+r
∴ ……………………6分
∴ ………………………………………7分
19.解:过点M作MF⊥CD,分别过点C作CE⊥轴,点D作DH⊥轴.
∴四边形CEMF为矩形,∴CE=MF
连接CM,∴CM2=CF2+FM2,
∵CD是弦,FM⊥CD,∴CF=CD=4
又∵CM=OA=5,∴FM==3,∴CE=3,
∵四边形OBDC是平行四边形,
∴CE=DH,,CO=BD,
∴△COD≌△BHD
∴OE=1
∴C(1,3)
20.(1)(2)证明见解析
21.略
22.解:(1)过作轴于,
,,
,,
点的坐标为.
(2)①当与相切时(如图1),切点为,此时,
,,
.
②当与,即与轴相切时(如图2),则切点为,,
过作于,则,
,.
③当与所在直线相切时(如图3),设切点为,交于,
则,,
.
过作轴于,则,
,
化简,得,
解得,
,
.
所求的值是,和.
23.证明:∵AB是⊙O的直径,.又,
,.
又,所以是等边三角形,由,知.
∵PA是⊙O的切线,.
在中,,,
所以,.
24.(1)证明:连结OD、DA
∵AB是⊙O的直径,∴∠BDA=90°
又∠ABD=30°,∴AD=AB=OA
又AC=AO,∴∠ODC=90°
∴CD切⊙O于点D
(2)方法一:连结PE,由(1)知∠DAB=60°,又AD=AC
∴∠C=30°
又∵DE切⊙P于E,∴PE⊥CE
∴PE=CP
又PE=BP=R,CA=AO=OB=r
∴3r=R,即
方法二:连结PE,
又∵DE切⊙P于E,∴PE⊥CE
∴OD∥PE
∴=
即 ,∴
25.(1)线段AB长度的最小值为4
理由如下:
连接OP因为AB切⊙O于P,所以OP⊥AB
取AB的中点C,则 …………3分
当时,OC最短,
即AB最短,此时 …………4分
(2)设存在符合条件的点Q,
如图①,
设四边形APOQ为平行四边形,
因为四边形APOQ为矩形
又因为
所以四边形APOQ为正方形
所以,
在Rt△OQA中,根据,
得Q点坐标为()。 …………7分
如图②,设四边形APQO为平行四边形
因为OQ∥PA,,
所以,
又因为
所以,
因为 PQ∥OA,
所以 轴。
设轴于点H,
在Rt△OHQ中,根据,
得Q点坐标为()
所以符合条件的点Q的坐标为()或()。