苏科版八年级数学下册 10.5 分式方程 教案(表格式)

文档属性

名称 苏科版八年级数学下册 10.5 分式方程 教案(表格式)
格式 docx
文件大小 33.6KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2022-04-01 11:11:34

图片预览

文档简介

课 题 10.5分式方程(3)
教 学 目 标 知识目标 能将实际问题中的等量关系用分式方程表示,列出分式方程解决简单的实际问题
能力目标 能根据实际问题的意义检验所得的结果是否合理。
情感目标 发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识
教学重点 如何结合实际分析问题,列出分式方程。分析过程,得到等量关系
教学难点 如何结合实际分析问题,列出分式方程。分析过程,得到等量关系
教具准备 课件
教 师 教 学 过 程 师生活动
一、课前预习与导学: 1、列方程(组)解应用题的一般步骤是什么? (1)审------审题,找出等量关系; (2)设------一般求什么设什么,也可间接设 (3)列--------根据等量关系列出分式方程; (4)解--------解这个方程; (5)答--------完整地写出答案,注意单位。 二、例题探索: 例1、为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务。这样,这两个小组的每个同学就要比原计划多做4面。如果这3个小组的人数相等,那么每个小组有多少名学生? 等量关系: 计划后每人所做的数量=计划前每人所做的数量+4 解:设每个小组有学生x名. 根据题意,得 解这个方程,得 x=10 经检验,x=10是所列方程的解. 答:每个小组有学生10名. 例2、甲、乙两公司各为“见义勇为基金会”捐款30000元,已知乙公司比甲公司人均多捐款20元,且甲公司的人数比乙公司的人数多20%。问甲、乙两公司各有多少人? 等量关系: 乙公司人均捐款额=甲公司人均捐款额+20 解:设乙公司有x人,则甲公司有(1+20%)x人. 根据题意,得 解这个方程,得 x=250 经检验,x=10是所列方程的解. 答:甲公司有300人,乙公司有250人. 例3、小明买软面笔记本共用去12元,小丽买硬面笔记本共用去21元,已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同本数的笔记本吗? 等量关系: 硬面笔记本单价=软面笔记本单价+1.2 解:设软面笔记本每本x元,则硬面笔记本每本(x+1.2)元. 根据题意,得 解这个方程,得 x=1.6 经检验,x=10是所列方程的解. 但按此价格,他们都买了7.5本笔记本,不符合实际意义. 答:小明和小丽不可能买到相同数量的笔记本. 总结:用分式方程解实际问题的一般步骤: 1.审:分析题意,找出数量关系和相等关系。 2.设:选择恰当的未知数,注意单位和语言完整。 3.列:根据数量和相等关系,正确列出代数式和方程 4.解:认真仔细。 5.验:有二次检验:(1)是否是所列分式方程的根; (2)是否满足实际意义. 6.答:注意单位和语言完整.且答案要生活化。 三、课堂练习: 书本 练习.1、2 四、中考链接: 1、某工程由甲、乙两队合作6天完成,厂家需付甲、乙两队共8700元;乙丙两队合作10天完成,厂家需付乙、丙两队共9500元;甲、丙两队合作5天完成全部工程的,厂家需付甲、丙两队共5500元。 (1)甲、乙、丙各队完成全部工程各需多少天? (2)若工期要求不超过15天完成全部工程,问由哪队单独完成此项工程花钱最少?请说明理由。 2、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为人,那么满足怎样的方程? 教师投影展示问题 学生思考回答 教师板书 教师投影例题1 学生读题 小组讨论 展示解题过程 教师投影例题2 学生读题 小组讨论 展示解题过程 教师投影例题3 学生读题 小组讨论 展示解题过程 教师引导学生总结解题步骤 教师板书解释 学生做练习 师生评议 教师投影题目 学生思考 学生做题
板书设计
教学反思