2022年人教版七下《第10章 数据的收集、整理与描述》单元测试卷(一)(教师版+学生版)

文档属性

名称 2022年人教版七下《第10章 数据的收集、整理与描述》单元测试卷(一)(教师版+学生版)
格式 zip
文件大小 355.4KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2022-04-03 19:08:33

文档简介

中小学教育资源及组卷应用平台
2022年人教版七下《第10章 数据的收集、整理与描述》
单元测试卷(一)
教师卷
一.选择题(共14小题)
1.当前,“低头族”已成为热门话题之一,小颖为了解路边行人边步行边低头看手机的情况,她应采用的收集数据的方式是(  )
A.对学校的同学发放问卷进行调查
B.对在路边行走的学生随机发放问卷进行调查
C.对在路边行走的行人随机发放问卷进行调查
D.对在图书馆里看书的人发放问卷进行调查
【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【解答】解:A、对学校的同学发放问卷进行调查不具代表性、广泛性,故A错误;
B、对在路边行走的学生随机发放问卷进行调查不具代表性、广泛性,故B错误;
C、对在路边行走的行人随机发放问卷进行调查具代表性、广泛性,故C正确;
D、对在图书馆里看书的人发放问卷进行调查不具代表性、广泛性,故D错误;
故选:C.
【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2.下列调查中,适宜采用普查方式的是(  )
A.了解一批圆珠笔的寿命
B.了解全国九年级学生身高的现状
C.考察人们保护海洋的意识
D.检查一枚用于发射卫星的运载火箭的各零部件
【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【解答】解:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;
B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;
C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;
D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;
故选:D.
【点评】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
3.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:
①这4万名考生的数学中考成绩的全体是总体;
②每个考生是个体;
③2000名考生是总体的一个样本;
④样本容量是2000.
其中说法正确的有(  )
A.4个 B.3个 C.2个 D.1个
【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【解答】解:这4万名考生的数学中考成绩的全体是总体;
每个考生的数学中考成绩是个体;
2000名考生的中考数学成绩是总体的一个样本,样本容量是2000.
故正确的是①④.
故选:C.
【点评】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
4.某课外兴趣小组为了解所在地区的老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样较合理的是(  )
A.在公园调查了1000名老年人的健康状况
B.在医院调查了1000名老年人的健康状况
C.调查了100名小区内老年邻居的健康状况
D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况
【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.
【解答】解:A、在公园调查了1000名老年人的健康状况,抽查的都是锻炼的老人,没有代表性,故A错误;
B、在医院调查了1000名老年人的健康状况,抽查的都是不健康的老人,没有代表性,故B错误;
C、调查了100名小区内老年邻居的健康状况,调查没有广泛性,故C错误;
D、利用派出所的户籍网随机调查了该地区10%的老年人的健康状况,调查由广泛性、代表性,故D正确;
故选:D.
【点评】本题考查了抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.
5.要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞出100条鱼,发现只有两条鱼是刚才做了记号的鱼.假设鱼在鱼塘内均匀分布,那么估计这个鱼塘的鱼数约为(  )
A.5000条 B.2500条 C.1750条 D.1250条
【分析】首先求出有记号的2条鱼在100条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.
【解答】解:由题意可得:502500(条).
故选:B.
【点评】本题考查了统计中用样本估计总体,表示出带记号的鱼所占比例是解题关键.
6.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:
通话时间x/min 0<x≤5 5<x≤10 10<x≤15 15<x≤20
频数(通话次数) 20 16 9 5
则通话时间不超过15min的频率为(  )
A.0.1 B.0.4 C.0.5 D.0.9
【分析】用不超过15分钟的通话时间除以所有的通话时间即可求得通话时间不超过15分钟的频率.
【解答】解:∵不超过15分钟的通话次数为20+16+9=45次,通话总次数为20+16+9+5=50次,
∴通话时间不超过15min的频率为0.9,
故选:D.
【点评】本题考查了频数分布表的知识,解题的关键是了解频率=频数÷样本容量,难度不大.
7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数分布直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是(  )
A.280 B.240 C.300 D.260
【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.
【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),
∴1000280(人),
即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.
故选:A.
【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
8.班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(如图).根据图中,发言次数是4次的男生、女生分别有(  )
A.4人,6人 B.4人,2人 C.2人,4人 D.3人,4人
【分析】根据频数分布折线图,找出发言次数是4次所对应的男女生的人数即可得解.
【解答】解:根据图象,发言次数是4次的男生有4人,女生有2人.
故选:B.
【点评】本题考查读频数分布折线图的能力,根据横坐标发言4次找出纵坐标对应的男女生的人数即可,比较简单.
9.据查2013年“五一”期间,南昌到九江部分火车时刻表如下:
车次 K302 K1192 K392 K744
发车时间 10:38 10:51 11:35 11:41
到站时间 12:41 12:21 13:10 13:01
若希望乘车时间越短越好,则在已知四趟火车中选择的车次是(  )
A.K302 B.K1192 C.K392 D.K744
【分析】分别根据四趟火车的发车时间和到站时间计算出所用时间,再比较即可.
【解答】解:K302时间:10:38到12:41时间为2个小时3分钟;
K1192时间:10:51到12:21时间为1个小时30分;
K392的时间:11:35到13:10时间为1小时35分,
K744的时间为11:41到13:01时间为1小时20分,
故选:D.
【点评】此题主要考查了统计表,关键是计算出每一趟火车所用时间.
10.下面两个统计图反映的是甲、乙两所学校三个年级的学生在各校学生总人数中的占比情况,下列说法错误的是(  )
A.甲校中七年级学生和八年级学生人数一样多
B.乙校中七年级学生人数最多
C.乙校中八年级学生比九年级学生人数少
D.甲、乙两校的九年级学生人数一样多
【分析】扇形统计图反映的部分与整体的关系,即各个部分占的比例大小关系,在一个扇形统计图中,可以直观的得出各个部分所占的比例,得出各部分的大小关系,但在不同的几个扇形统计图中就不能直观看出各部分的大小关系,虽然比例较大,代表的数量不一定就多,还与总体有关.
【解答】解:甲校中七年级学生占全校的35%,和八年级学生人数也占全校的35%,由于甲校的人数是一定的,因此甲校中七年级学生和八年级学生人数一样多是正确的;
乙校中七年级占45%,而其他两个年级分别占25%,30%,因此B是正确的;
乙校中八年级学生占25%,比九年级学生人数占30%由于整体乙校的总人数是一定的,所以C是正确的;
两个学校九年级所占的比都是30%,若两个学校的总人数不同.他们也不相等,故D是错误的,
故选:D.
【点评】考查对扇形统计图所反映的各个部分所占整体的百分比的理解,扇形统计图只反映部分占总体的百分比,百分比相同,代表的数量不一定相等.
11.武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是(  )
A.九(1)班的学生人数为40
B.m的值为10
C.n的值为20
D.表示“足球”的扇形的圆心角是70°
【分析】由条形统计图和扇形统计图得到喜欢篮球的人数而后所占的百分比,求出人数,根据人数求出m、n,根据表示“足球”的百分比求出扇形的圆心角.
【解答】解:由图①和图②可知,喜欢篮球的人数是12人,占30%,
12×30%=40,则九(1)班的学生人数为40,A正确;
4÷40=10%,则m的值为10,B正确;
1﹣40%﹣30%﹣10%=20%,n的值为20,C正确;
360°×20%=72°,D错误,
故选:D.
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
12.如图是某国产品牌手机专卖店今年8﹣12月高清大屏手机销售额折线统计图.根据图中信息,可以判断相邻两个月高清大屏手机销售额变化最大的是(  )
A.8﹣9月 B.9﹣10月 C.10﹣11月 D.11﹣12月
【分析】根据折线图的数据,分别求出相邻两个月的高清大屏手机销售额的变化值,比较即可得解.
【解答】解:8﹣9月,30﹣23=7万元,
9﹣10月,30﹣25=5万元,
10﹣11月,25﹣15=10万元,
11﹣12月,19﹣15=4万元,
所以,相邻两个月中,高清大屏手机销售额变化最大的是10﹣11月.
故选:C.
【点评】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,根据图中信息求出相邻两个月的高清大屏手机销售额变化量是解题的关键.
13.空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是(  )
A.折线图 B.条形图 C.直方图 D.扇形图
【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;
折线统计图表示的是事物的变化情况;
条形统计图能清楚地表示出每个项目的具体数目;
频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.
【解答】解:由分析可知,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.
故选:D.
【点评】本题考查扇形统计图、折线统计图、条形统计图,理解各自的特点是解题的关键.
14.近年来国内生产总值年增长率的变化情况如图,从图上看,下列结论中不正确的是(  )
A.1995一1999年,国内生产总值的年增长率逐年减小
B.2000年国内生产总值的年增长率开始回升
C.这7年中,每年的国内生产总值不断增长
D.这7年中,每年的国内生产总值有增有减
【分析】根据题意,根据增长率的意义:这7年中,每年的国内生产总值增长率为正.故这7年中,每年的国内生产总值不断增长,据此即可作出判断.
【解答】解:A、1995一1999年,国内生产总值的年增长率逐年减小,正确;
B、2000年国内生产总值的年增长率开始回升,正确;
C、这7年中,每年的国内生产总值不断增长,正确;
D、这7年中,每年的国内生产总值增长率为正,故这7年中,每年的国内生产总值不断增长,错误.
故选:D.
【点评】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.
二.填空题(共6小题)
15.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是 5 .
【分析】一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数.
【解答】解:∵一个容量为50的样本,
把它分成6组,
第一组到第四组的频数分别为6,8,9,12,
第五组的频率是0.2,则第五组的频数是0.2×50=10,
∴第六组的频数是50﹣6﹣8﹣9﹣10﹣12=5.
故答案为:5.
【点评】此题考查频数与频率问题,关键是利用频数、频率和样本容量三者之间的关系进行分析.
16.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有 48 件.
【分析】由各长方形的高的比得到各段的频率之比,即可得到第二组的频率,再由数据总和=某段的频数÷该段的频率计算作品总数.
【解答】解:从左至右各长方形的高的比为2:3:4:6:1,
即频率之比为2:3:4:6:1;第二组的频率为,第二组的频数为9;
故则全班上交的作品有948.
故答案为:48.
【点评】本题考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.
17.小明想了解自己一学期数学成绩的变化趋势,应选用 折线 统计图来描述数据.
【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.
【解答】解:由统计图的特点可知:要反映小明一学期来的数学成绩变化情况,应选用折线统计图,
因为折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况.
故答案为:折线.
【点评】本题考查了折线统计图,此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.
18.某班数学老师想了解学生对数学的喜欢程度,对全班50名学生进行调查,根据调查结果绘制了扇形统计图(如图所示),其中A表示“很喜欢”,B表示“一般”,C表示“不喜欢”,则该班“很喜欢”数学的学生有 18 人.
【分析】根据扇形统计图求出A占的百分比,由调查的总人数50计算即可得到结果.
【解答】解:根据题意得:(1﹣16%﹣48%)×50=18(人),
则该班“很喜欢”数学的学生有18人.
故答案为:18
【点评】此题考查了扇形统计图,弄清图形中的数据是解本题的关键.
19.某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是  150 支.
【分析】首先根据红豆口味的雪糕的数量和其所占的百分比确定售出雪糕的总量,然后乘以水果口味的所占的百分比即可求得其数量.
【解答】解:观察扇形统计图知:售出红豆口味的雪糕200支,占40%,
∴售出雪糕总量为200÷40%=500(支),
∵水果口味的占30%,
∴水果口味的有500×30%=150(支),
故答案为:150.
【点评】本题考查了扇形统计图的知识,解题的关键是正确地从扇形统计图中整理出进一步解题的有关信息.
20.为了了解全校学生的视力情况,小明、小华、小李三个同学分别设计了三个方案.
①小明:检查全班每个同学的视力,以此推算出全校学生的视力情况.
②小华:在校医室找到2000年全校的体检表,由此了解全校学生视力情况.
③小李:抽取全校学号为5的倍数的同学,检查视力,从而估计全校学生视力情况.
以上的调查方案最合适的是 ③ (填写序号).
【分析】根据抽样调查和全面调查的意义分别分析得出即可.
【解答】解:①小明:检查全班每个同学的视力,以此推算出全校学生的视力情况,样本具有片面性,不能作为样本,故此选项错误;
②小华:在校医室找到2000年全校的体检表,由此了解全校学生视力情况,人数较多不易全面调查,故此选项错误;
③小李:抽取全校学号为5的倍数的同学,检查视力,从而估计全校学生视力情况,此选项正确;
故选;③.
【点评】此题主要考查了抽样调查的可靠性,利用抽样调查和全面调查的定义得出是解题关键.
三.解答题(共6小题)
21.为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:
频数分布表
身高分组 频数 百分比
x<155 5 10%
155≤x<160 a 20%
160≤x<165 15 30%
165≤x<170 14 b
x≥170 6 12%
总计 100%
(1)填空:a= 10 ,b= 28% ;
(2)补全频数分布直方图;
(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?
【分析】(1)根据表格中的数据可以求得调查的学生总数,从而可以求得a的值,进而求得b的值;
(2)根据(1)中的a的值可以补全频数分布直方图;
(3)根据表格中的数据可以估算出该校九年级身高不低于165cm的学生大约有多少人.
【解答】解:(1)由表格可得,
调查的总人数为:5÷10%=50,
∴a=50×20%=10,
b=14÷50×100%=28%,
故答案为:10,28%;
(2)补全的频数分布直方图如下图所示,
(3)600×(28%+12%)=600×40%=240(人)
即该校九年级共有600名学生,身高不低于165cm的学生大约有240人.
【点评】本题考查频数分布直方图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.
22.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:
月均用水量x(t) 频数(户) 频率
0<x≤5 6 0.12
5<x≤10  12  0.24
10<x≤15 16 0.32
15<x≤20 10 0.20
20<x≤25 4  0.08 
25<x≤30 2 0.04
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?
【分析】(1)根据0<x≤5中频数为6,频率为0.12,则调查总户数为6÷0.12=50,进而得出在5<x≤10范围内的频数以及在20<x≤25范围内的频率;
(2)根据(1)中所求即可得出不超过15t的家庭总数即可求出,不超过15t的家庭占被调查家庭总数的百分比;
(3)根据样本数据中超过20t的家庭数,即可得出1000户家庭超过20t的家庭数.
【解答】解:(1)如图所示:根据0<x≤5中频数为6,频率为0.12,
则6÷0.12=50,50×0.24=12户,4÷50=0.08,
故表格从上往下依次是:12和0.08;
(2)100%=68%;
(3)1000×(0.08+0.04)=120户,
答:该小区月均用水量超过20t的家庭大约有120户.
【点评】此题主要考查了利用样本估计总体以及频数分布直方图与条形图综合应用,根据已知得出样本数据总数是解题关键.
23.某市一中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:
等级 非常了解 比较了解 基本了解 不太了解
频数 40 120 36 4
频率 0.2 m 0.18 0.02
(1)本次问卷调查中一共抽查了 200 名学生;表中的m值为 0.6 .
(2)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少人?
【分析】(1)由于非常了解频数40,频率为0.2,即可计算样本容量;表中的m是比较了解的频率,可用频数除以样本容量进行计算;
(2)由样本中“比较了解”的频率0.6,可以估计总体中“比较了解”的频率也是0.6.
【解答】解:(1)∵统计表知频率为0.2
∴抽查的总人数为:40÷0.2=200;
m的值为:120÷200=0.6;
(2)∵比较了解的频率为0.6,
∴这些学生中“比较了解”垃圾分类知识的人数约为1500×0.6=900(人).
【点评】本题考查了频率分布表及用样本估计总体的知识,统计图表是中考的必考内容,本题渗透了统计图、样本估计总体的知识,数据的问题在中考试卷中也有越来越综合的趋势.
24.在2016CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:
根据所给信息,解答下列问题:
(1)在频数分布表中,m= 80 ,n= 0.2 .
成绩 频数 频率
60≤x<70 60 0.30
70≤x<80 m 0.40
80≤x<90 40 n
90≤x≤100 20 0.10
(2)请补全图中的频数分布直方图.
(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参赛,请估计约有多少人进入决赛?
【分析】(1)用抽查的总人数乘以成绩在70≤x<80段的人数所占的百分比求出m;用成绩在80≤x<90段的频数除以总人数即可求出n;
(2)根据(1)求出的m的值,直接补全频数分布直方图即可;
(3)用娄底市共有的人数乘以80分以上(包括80分)所占的百分比,即可得出答案.
【解答】解:(1)根据题意得:
m=200×0.40=80(人),
n=40÷200=0.20;
故答案为:80,0.20;
(2)根据(1)可得:70≤x<80的人数有80人,补图如下:
(3)根据题意得:
4000×(0.20+0.10)=1200(人).
答:估计约有1200人进入决赛.
【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
25.如图所示,某校七年级有学生400人,现抽取部分学生做引体向上的测试,成绩进行整理后分成五组,并画出频数分布直方图,已知从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数是25,根据已知条件回答下列问题:
(1)第五小组频率是多少?
(2)参加本次测试的学生总数是多少?
(3)如果做20次以上为及格(含20次),估计全校七年级有多少名学生合格?
【分析】(1)根据频率之和为1,即可解决问题;
(2)根据百分比,计算即可;
(3)用样本估计作图的思想解决问题即可;
【解答】解:(1)第五小组频率=1﹣0.05﹣0.15﹣0.25﹣0.30=0.25.
(2)参加本次测试的学生总数=25÷0.25=100(人).
(3)第三小组的频数为25,第四小组的频数为30,第五小组人数为25,
估计全校七年级有,400320名学生合格.
【点评】本题考查频数分布直方图、样本估计总体等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.
26.某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.
分组 次数x(个) 人数
A 0≤x<120 24
B 120≤x<130 72
C 130≤x<140
D x≥140
根据以上信息,解答下列问题:
(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为 72 人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为 12 %;
(2)本次共调查了 200 名学生,其中跳绳次数在130≤x<140范围内的人数为 59 人,跳绳次数在x≥140范围内的人数占被调查人数的百分比为 22.5 %;
(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.
【分析】(1)根据统计表可得跳绳次数在120≤x<130范围内的人数为72人;
根据A组的人数是24,所占的百分比是12%即可求得调查的总人数,然后根据百分比的定义求得跳绳次数在0≤x<120范围内的人数占被调查人数的百分比;
(2)利用总人数减去其它组的人数求得绳次数在x≥140范围内的人数占被调查人数的人数;
(3)利用总人数乘以对应的比例即可求解.
【解答】解:(1)根据统计表可得跳绳次数在120≤x<130范围内的人数为72人;
调查的总人数是24÷12%=200(人).则跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为12%;
故答案是:71,12;
(2)调查的总人数是200人;
跳绳次数在130≤x<140范围内的人数为200×29.5%=59(人),
绳次数在x≥140范围内的人数占被调查人数的人数是200﹣24﹣72﹣59=45(人),
则所长的百分比是22.5%.
故答案是:200,59,22.5;
(3)估计该区七年级学生1分钟跳绳的次数不少于130个的人数是:40002080(人).
【点评】本题考查的是扇形统计图和统计表的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
第1页(共1页)中小学教育资源及组卷应用平台
2022年人教版七下《第10章 数据的收集、整理与描述》
单元测试卷(一)
学号: 班级: 姓名:
一.选择题(共14小题)
1.当前,“低头族”已成为热门话题之一,小颖为了解路边行人边步行边低头看手机的情况,她应采用的收集数据的方式是(  )
A.对学校的同学发放问卷进行调查
B.对在路边行走的学生随机发放问卷进行调查
C.对在路边行走的行人随机发放问卷进行调查
D.对在图书馆里看书的人发放问卷进行调查
2.下列调查中,适宜采用普查方式的是(  )
A.了解一批圆珠笔的寿命
B.了解全国九年级学生身高的现状
C.考察人们保护海洋的意识
D.检查一枚用于发射卫星的运载火箭的各零部件
3.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:
①这4万名考生的数学中考成绩的全体是总体;
②每个考生是个体;
③2000名考生是总体的一个样本;
④样本容量是2000.
其中说法正确的有(  )
A.4个 B.3个 C.2个 D.1个
4.某课外兴趣小组为了解所在地区的老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样较合理的是(  )
A.在公园调查了1000名老年人的健康状况
B.在医院调查了1000名老年人的健康状况
C.调查了100名小区内老年邻居的健康状况
D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况
5.要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞出100条鱼,发现只有两条鱼是刚才做了记号的鱼.假设鱼在鱼塘内均匀分布,那么估计这个鱼塘的鱼数约为(  )
A.5000条 B.2500条 C.1750条 D.1250条
6.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:
通话时间x/min 0<x≤5 5<x≤10 10<x≤15 15<x≤20
频数(通话次数) 20 16 9 5
则通话时间不超过15min的频率为(  )
A.0.1 B.0.4 C.0.5 D.0.9
7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数分布直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是(  )
A.280 B.240 C.300 D.260
8.班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(如图).根据图中,发言次数是4次的男生、女生分别有(  )
A.4人,6人 B.4人,2人 C.2人,4人 D.3人,4人
9.据查“五一”期间,南昌到九江部分火车时刻表如下:
车次 K302 K1192 K392 K744
发车时间 10:38 10:51 11:35 11:41
到站时间 12:41 12:21 13:10 13:01
若希望乘车时间越短越好,则在已知四趟火车中选择的车次是(  )
A.K302 B.K1192 C.K392 D.K744
10.下面两个统计图反映的是甲、乙两所学校三个年级的学生在各校学生总人数中的占比情况,下列说法错误的是(  )
A.甲校中七年级学生和八年级学生人数一样多
B.乙校中七年级学生人数最多
C.乙校中八年级学生比九年级学生人数少
D.甲、乙两校的九年级学生人数一样多
11.武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是(  )
A.九(1)班的学生人数为40
B.m的值为10
C.n的值为20
D.表示“足球”的扇形的圆心角是70°
12.如图是某国产品牌手机专卖店今年8﹣12月高清大屏手机销售额折线统计图.根据图中信息,可以判断相邻两个月高清大屏手机销售额变化最大的是(  )
A.8﹣9月 B.9﹣10月 C.10﹣11月 D.11﹣12月
13.空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是(  )
A.折线图 B.条形图 C.直方图 D.扇形图
14.近年来国内生产总值年增长率的变化情况如图,从图上看,下列结论中不正确的是(  )
A.1995一1999年,国内生产总值的年增长率逐年减小
B.2000年国内生产总值的年增长率开始回升
C.这7年中,每年的国内生产总值不断增长
D.这7年中,每年的国内生产总值有增有减
二.填空题(共6小题)
15.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是   .
16.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有   件.
17.小明想了解自己一学期数学成绩的变化趋势,应选用   统计图来描述数据.
18.某班数学老师想了解学生对数学的喜欢程度,对全班50名学生进行调查,根据调查结果绘制了扇形统计图(如图所示),其中A表示“很喜欢”,B表示“一般”,C表示“不喜欢”,则该班“很喜欢”数学的学生有   人.
19.某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是    支.
20.为了了解全校学生的视力情况,小明、小华、小李三个同学分别设计了三个方案.
①小明:检查全班每个同学的视力,以此推算出全校学生的视力情况.
②小华:在校医室找到2000年全校的体检表,由此了解全校学生视力情况.
③小李:抽取全校学号为5的倍数的同学,检查视力,从而估计全校学生视力情况.
以上的调查方案最合适的是   (填写序号).
三.解答题(共6小题)
21.为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:
频数分布表
身高分组 频数 百分比
x<155 5 10%
155≤x<160 a 20%
160≤x<165 15 30%
165≤x<170 14 b
x≥170 6 12%
总计 100%
(1)填空:a=   ,b=   ;
(2)补全频数分布直方图;
(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?
22.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:
月均用水量x(t) 频数(户) 频率
0<x≤5 6 0.12
5<x≤10     0.24
10<x≤15 16 0.32
15<x≤20 10 0.20
20<x≤25 4    
25<x≤30 2 0.04
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?
23.某市一中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:
等级 非常了解 比较了解 基本了解 不太了解
频数 40 120 36 4
频率 0.2 m 0.18 0.02
(1)本次问卷调查中一共抽查了   名学生;表中的m值为   .
(2)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少人?
24.在英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:
根据所给信息,解答下列问题:
(1)在频数分布表中,m=   ,n=   .
成绩 频数 频率
60≤x<70 60 0.30
70≤x<80 m 0.40
80≤x<90 40 n
90≤x≤100 20 0.10
(2)请补全图中的频数分布直方图.
(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参赛,请估计约有多少人进入决赛?
25.如图所示,某校七年级有学生400人,现抽取部分学生做引体向上的测试,成绩进行整理后分成五组,并画出频数分布直方图,已知从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数是25,根据已知条件回答下列问题:
(1)第五小组频率是多少?
(2)参加本次测试的学生总数是多少?
(3)如果做20次以上为及格(含20次),估计全校七年级有多少名学生合格?
26.某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.
分组 次数x(个) 人数
A 0≤x<120 24
B 120≤x<130 72
C 130≤x<140
D x≥140
根据以上信息,解答下列问题:
(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为   人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为   %;
(2)本次共调查了   名学生,其中跳绳次数在130≤x<140范围内的人数为   人,跳绳次数在x≥140范围内的人数占被调查人数的百分比为   %;
(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.
第1页(共1页)