人教版高一物理必修第一册课时作业
3 万有引力理论的成就
一、单项选择题
1、已知引力常量G,利用下列哪组数据不能计算出地球的质量 ( )
A.地球的半径R和地球表面的重力加速度g
B.卫星围绕地球运动的轨道半径r和周期T
C.卫星围绕地球运动的轨道半径r和线速度v
D.卫星围绕地球运动的周期T和卫星质量m
2、2020年11月29日嫦娥五号进入了近圆形环月轨道。已知嫦娥五号紧贴月球表面飞行一圈所需时间为T,引力常量为G,则可求出的数据是 ( )
A.月球质量 B.月球半径
C.月球密度 D.嫦娥五号的质量
3、2021年2月10日,我国首次火星探测任务——“天问一号”火星探测器实施近火捕获制动,开启了环绕火星之旅。假设“天问一号”探测器在绕火星做圆周运动时距火星表面高为h,绕行的周期为T1;火星绕太阳公转的周期为T2,公转半径为R。太阳半径为r1,
火星半径为r2。若忽略其他星球对“天问一号”探测器的影响,则火星与太阳的质量之比为 ( )
A. B.
C. D.·
4、宇航员乘飞船前往A星球,其中有一项任务是测该星球的密度。已知该星球的半径为R,引力常量为G。结合已知量,有同学为宇航员设计了以下几种测量方案,你认为不正确的是(不考虑星球自转的影响) ( )
A.当飞船绕星球在任意高度运行时,测出飞船的运行周期T
B.当飞船绕星球在任意高度运行时,测出飞船的运行周期T和飞船到星球表面的距离h
C.当飞船靠近星球表面绕星球运行时,测出飞船的运行周期T
D.当飞船着陆后,宇航员测出该星球表面的重力加速度g
5、2020年10月26日,我国在西昌卫星发射中心用长征二号丙运载火箭成功将“遥感三十号”07组卫星发射送入预定轨道,若该卫星绕地球做匀速圆周运动,其轨道半径为r,线速度大小为v,地球半径为R,引力常量为G,则地球的平均密度为 ( )
A. B.
C. D.
6、关于行星运动的规律,下列说法符合史实和事实的是 ( )
A.开普勒在大量数据研究的基础上,推导出了行星运动的规律
B.牛顿通过扭秤实验结合“理想模型”物理思想测得引力常量G
C.天王星的运动轨道是亚当斯和开普勒共同研究推算出来的,后人称天王星为“笔尖下发现的行星”
D.在地球表面可以发射一颗卫星,绕地球运行的周期小于84分钟
7、2021年2月5日,我国首个火星探测器“天问一号”传回了火星照片,如图所示。多年以后,小明作为一位火星移民,于太阳光直射赤道的某天晚上,在火星赤道上某处仰望天空。某时,他在西边的地平线附近恰能看到一颗火星人造卫星出现,之后极快地变暗而看不到了,他记下此时正是火星上日落后约4小时5分。后来小明得知这是我国火星基地发射的一颗绕火星自西向东运动的周期为T的探测卫星,查阅资料得知火星自西向东自转且周期约为24小时30分,已知引力常量为G。根据以上信息,分析可得火星密度为 ( )
A. B.
C. D.
8、如图,三个天体a、b、c质量分别为m1、m2、M(M m1,M m2)。在c的万有引力作用下,a、b在同一平面内绕c沿逆时针方向做匀速圆周运动,它们的周期之比Ta∶Tb=1∶8,a、b的轨道半径分别为ra和rb。从图示位置开始,在b运动一周的过程中 ( )
A.ra∶rb=1∶4
B.a、b距离最近的次数为8次
C.a、b距离最远的次数为9次
D.a、b、c共线的次数为16次
二、多项选择题
9、下面说法中正确的是 ( )
A.海王星是人们依据万有引力定律计算出轨道而发现的
B.天王星是人们依据万有引力定律计算出轨道而发现的
C.天王星的运动轨道偏离是根据万有引力定律计算出来的,其原因是天王星受到轨道外面其他行星的引力作用
D.冥王星是人们依据万有引力定律计算出轨道而发现的
10、下列说法正确的是 ( )
A.海王星是人们依据万有引力定律计算出其运行轨道而发现的
B.天王星是人们依据万有引力定律计算出其运行轨道而发现的
C.天王星的运行轨道偏离根据万有引力定律计算出来的轨道,其原因是天王星受到轨道外面其他行星的引力作用
D.以上说法都不对
11、组成星球的物质是靠引力吸引在一起的,这样星球就有一个最大自转速度,如果超出了该速度,星球的万有引力将不足以维持其赤道附近的物体随星球做圆周运动,由此能得到半径为R、密度为ρ、质量为M且质量均匀分布的星球的最小自转周期T,下列表达式中正确的是 ( )
A.T=2π B.T=2π
C.T= D.T=
12、2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,实现了人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹。已知月球的质量为M、半径为R,探测器的质量为m,引力常量为G。嫦娥四号探测器围绕月球做半径为r的匀速圆周运动时,探测器的 ( )
A.线速度为 B.角速度为
C.周期为2π D.向心加速度为
13、天文学家观测发现的双子星系统“开普勒-47”有一对互相围绕运行的恒星,其中一颗大恒星的质量为M,另一颗小恒星的质量只有大恒星质量的三分之一。已知引力常量为G,据此可知 ( )
A.大、小两颗恒星的转动周期之比为1∶3
B.大、小两颗恒星的转动角速度之比为1∶1
C.大、小两颗恒星的转动半径之比为3∶1
D.大、小两颗恒星的转动半径之比为1∶3
三、非选择题
14、已知月球的质量为M1,半径为R,则月球表面的重力加速度是多少 月球绕地球转动的周期是T,轨道半径为r,写出地球质量M2的表达式。(引力常量为G)
15、我国已实现探月计划,同学们也对月球有了更多的关注。
(1)若已知地球半径为R,地球表面的重力加速度为g,月球绕地球运动的周期为T,且把月球绕地球的运动近似看作匀速圆周运动。试求出月球绕地球运动的轨道半径。
(2)若某位航天员随登月飞船登陆月球后,在月球表面某处以速度v0竖直向上抛出一个小球,经过时间t,小球落回到抛出点。已知月球半径为r,引力常量为G。试求出月球的质量M′。
16、 宇航员在一星球表面附近高h处,以初速度v0竖直向上抛出一小球,经过时间t小球落到星球表面。已知该星球的半径为R,引力常量为G,不计星球表面的气体阻力,则该星球表面的重力加速度和星球质量分别为多大
17、如图所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度竖直向上做匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的。已知地球半径为R,求火箭此时离地面的高度。(g为地面附近重力加速度)
18、2020年6月23日9时43分,我国在西昌卫星发射中心成功发射了第五十五颗北斗导航卫星。假设该卫星在距离地球表面高为h的轨道上绕地球做匀速圆周运动,地球半径为R,地球表面重力加速度为g,引力常量为G,地球的体积为V=πR3,忽略地球自转的影响。求:
(1)地球的平均密度ρ;
(2)该人造卫星绕地球运动的周期T。
答案与解析
1、D
解析:已知地球的半径和地球表面的重力加速度,对地球表面的物体有mg=G,解得M=,故能计算出地球的质量,A不符合题意;
已知卫星围绕地球运动的轨道半径和周期,有G=mr,得M=,故能计算出地球的质量,B不符合题意;已知卫星围绕地球运动的轨道的半径和线速度,有G=m,得M=,故能计算出地球的质量,C不符合题意;已知卫星围绕地球运动的周期T和卫星的质量m,不能计算出地球质量,D符合题意。
2、C
解析:设月球半径为R,月球质量为M,嫦娥五号的质量为m,则根据万有引力提供向心力,有G=mR,可得M=,m被消去,无法求出,因R未知,M也无法求出,而M=ρV=ρ·πR3,整理可得ρ=,故C正确,A、B、D错误。
3、D
解析:火星绕太阳公转时由万有引力提供向心力,故有G=M火R;同理,“天问一号”探测器绕火星运动时,有G=M卫(r2+h),联立解得=·,选项D正确。
4、A
解析:星球的质量M=ρV=ρπR3,飞船绕星球在任意高度运行时,万有引力提供向心力,有G=m·(R+h),联立解得ρ=,由上式可以判定,需测出飞船的运行周期T和飞船到星球表面的距离h,选项A错误,B正确。当飞船绕星球表面运行时,有h=0,则ρ=,故需测出飞船的运行周期T,选项C正确;飞船着陆后,在星球表面物体的重力等于万有引力,有mg=G,结合M=ρV=ρπR3,得ρ=,由上式可知,测出星球表面的重力加速度g,即可得到星球的密度,选项D正确。故选A。
5、A
解析:设地球的质量为M,卫星的质量为m,根据万有引力提供向心力,有G=m,解得M=,地球体积为V=πR3,可得地球的密度ρ==,选项A正确。
6、A
解析:开普勒在大量数据研究的基础上,推导出了行星运动的规律,A正确;卡文迪什通过扭秤实验结合“理想模型”物理思想测得引力常量G,B错误;英国的亚当斯和法国的勒维耶各自独立地利用万有引力定律计算出了海王星的轨道,
德国的伽勒在勒维耶预言的位置附近发现了海王星,人们称海王星为“笔尖下发现的行星”,C错误;由地球对环绕地球运行的卫星的万有引力提供向心力,得=mr,可知卫星做圆周运动的周期T=,如果轨道半径取地球半径,可以得出卫星绕地球运行的最小周期为84.7 min,故D错误。
7、C
解析:火星自转周期约为24小时30分,日落后4小时5分,此时火星相对于日落时转过的角度为60°,卫星的位置如图所示,由图知=cos 30°;设火星的质量为M,卫星的质量为m,根据万有引力提供向心力,可得G=mr,火星密度为ρ=,联立解得ρ=,选项C正确。
8、A
解析:根据开普勒第三定律有=,解得===,故A正确;设a、b两次相距最近的时间间隔为t,则有t=2π,解得t=,在b运动一周的过程中,a、b距离最近的次数为n===-1=7,故B
错误;设间隔时间t',a、b、c共线一次,则有t'=π,解得t'=,在b运动一周的过程中,a、b、c共线的次数为n'===2=14,其中7次a、b距离最近,另外7次a、b距离最远,故C、D错误。
9、ACD
解析:人们通过望远镜发现了天王星,经过仔细的观测发现,天王星的运行轨道与根据万有引力定律计算出来的轨道总有一些偏差,于是认为天王星轨道外面还有一颗未发现的行星,它对天王星的吸引使其轨道产生了偏差。英国的亚当斯和法国的勒维耶根据天王星的观测资料,独立地利用万有引力定律计算出这颗新行星(即海王星)的轨道,后来用类似的方法发现了冥王星。故A、C、D正确,B错误。
10、AC
解析:海王星是人们根据万有引力定律计算出其轨道,然后由天文工作者在预言的位置附近观察到的,天王星是人们通过望远镜观察发现的;由于天王星的运行轨道偏离根据万有引力定律计算出来的轨道,引起了人们的思考,推测天王星轨道外面存在未知行星,进而发现了海王星。故A、C正确,B、D错误。
11、BC
解析:当星球的自转周期小到一定值时,星球赤道处的物体对星球的压力为零,此时万有引力充当向心力,有=mR,解得T=2π,故B正确,A错误;又因星球的质量M=ρV=πρR3,可得T=,故C正确,D错误。
12、BC
解析:根据万有引力提供向心力,有G=m=mω2r=mr=ma,得线速度v=,角速度ω=,周期T=2π,向心加速度a=,故B、C正确,A、D错误。
13、BD
解析:一对互相围绕运行的恒星组成双星系统,大、小两颗恒星的转动周期和角速度均相等,故A错误,B正确;设大恒星距两恒星运动轨道的圆心的距离为x1,小恒星距两恒星运动轨道的圆心的距离为x2,有Mω2x1=ω2x2,可得大、小两颗恒星的转动半径之比为1∶3,C错误,D正确。
14、答案:
解析:在月球表面,根据物体所受重力和万有引力的关系,可得
mg月=G
解得g月=
月球绕地球转动,根据万有引力提供向心力,可得
G=M1r
解得地球质量M2=
15、解析:(1)设地球质量为M,月球质量为M′,根据万有引力定律和向心力公式:
G=M′()2r
在地球表面有G=mg
解得:r=
(2)设月球表面处的重力加速度为g月
根据运动学规律可得:t=
根据万有引力等于重力:G=mg月
联立解得:M′=
答案:(1)
(2)
16、答案:
解析:设该星球表面的重力加速度为g,依题意有
-h=v0t-gt2
解得g=
在星球表面,物体的重力等于万有引力,有
mg=G
解得M==
17、解析:取测试仪器为研究对象,其先后受力如图甲、乙所示。
据物体的平衡条件有FN1=mg1,g1=g
所以FN1=mg
据牛顿第二定律有FN2-mg2=ma=m·
所以FN2=+mg2
由题意知FN2=FN1,所以+mg2=mg
所以g2=g,设火箭距地面高度为H,
所以mg2=
又mg=所以g=,H=。
答案:
18、答案:(1)
(2)2π
解析:(1)在地球表面附近,有mg=G
解得M=
又ρ=,V=πR3
得ρ=
(2)根据万有引力提供向心力,有
G=m(R+h)
解得T=2π
又知GM=gR2
所以T=2π。