九年级下册数学第三章圆单元测试四(附答案)
学校:___________姓名:___________班级:___________考号:___________
题号
一
二
三
四
总分
得分
第I卷(选择题)
评卷人
得分
一、选择题
1. 已知⊙O的面积为,若点O到直线的距离为。则直线与⊙O的位置关系是( )
A. 相离 B. 相切 C. 相交 D. 无法确定
2.如图,内接于,若,则的大小为 ( )
B. C. D.
3.⊙O1和⊙O2的半径分别为方程的两个根,O1O2 ,则⊙O1和⊙O2的位置关
系是 ( )
A.内含 B.内切 C.相交 D.外切
4.如图,⊙O的半径是1,A、B、C是圆周上的三点,∠BAC=30°,则弦BC的长是( )
A B.2 C.1 D.
5.已知⊙O1与⊙O2外切,O1O2=8cm,⊙O1的半径为5cm,则⊙O2的半径是( )
A. 13cm. B. 8cm C. 6cm D. 3cm
6.如图,用邻边长分别为a,b(a<b)的矩形硬纸板裁出以a为直径的两个半圆,再截除与矩形的较长边,两个半圆均相切的两个小圆,把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是
A. B. C. D.
7.如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是( )
A. 外离 B. 相切 C. 相交 D. 内含
8.如图,已知扇形,的半径之间的关系是,则弧BC的长是弧AD长的( )
A.倍 B.倍 C.倍 D.倍
9.小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的
一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是
A. 2 B. C. D. 3
10.如图,分别以直角△ABC的三边AB,BC,CA为直径向外作半圆.设直线AB左边阴影部分的面积为S1,右边阴影部分的面积和为S2,则( )
A.S1=S2 B.S1<S2 C.S1>S2 D.无法确定
第II卷(非选择题)
评卷人
得分
二、填空题
11.用半径为12cm,圆心角为的扇形做成一个圆锥模型的侧面,则此圆锥的高为 cm(结果保留根号).
12.如图,⊙O的半径为2,C1是函数y =x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是 .
13.圆锥的母线长为6cm,侧面展开图是圆心角为300(的扇形,则圆锥底面半径 cm,侧面展开图的面积是 cm2.
14. 如图,已知A、B两点的坐标分别为、(0,2),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为 。
15.如图,已知⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为 .
16.如图,⊙O是△ABC的外接圆,∠C=30°,AB=2cm,则⊙O的直径为 cm.
评卷人
得分
三、计算题
17.如图,AB是⊙O的直径,弦CD⊥AB于点E,过点B作⊙O的切线,交AC的延长线于点F.已知OA=3,AE=2,
(1)求CD的长;
(2)求BF的长.
18.定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,
当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______
(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.
评卷人
得分
四、解答题
19.如图,三角形ABC的两个顶点B、C在圆上,顶点A在圆外,AB、AC分别交圆于E、D两点,连结EC、BD.
(1)求证:ΔABD∽ΔACE;
(2)若ΔBEC与ΔBDC的面积相等,试判定三角形ABC的形状.
20.如图,AB是⊙O的直径,AC和BD是它的两条切线,CO平分∠ACD.
(1)求证:CD是⊙O的切线;(2)若AC=2,BC=3,求AB的长.
21.已知:如图,⊙O是△ABC的外接圆,AB为⊙O的直径,弦CD交AB于E,
∠BCD=∠BAC .
(1)求证:AC=AD;
(2)过点C作直线CF,交AB的延长线于点F,若∠BCF=30°,则结论“CF一定是⊙O的切线”是否正确?若正确,请证明;若不正确,请举反例.
22.已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.
(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);
(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;
(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.
23.已知:如图,是⊙外一点,的延长线交⊙于点和点,点在圆上,且,∠.
(1)求证:直线是⊙的切线;
(2)若⊙的直径为10,求的长.
24.如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.
(1)求证:DF垂直平分AC;
(2)求证:FC=CE;
(3)若弦AD=5㎝,AC=8㎝,求⊙O的半径.
25.已知:如图,在⊙O中M, N分别为弦AB, CD的中点,AB=CD, AB不平行于CD.
求证:∠AMN=∠CNM
参考答案
1.A
2.D
3.C
4.C
5.D
6.D
7.D。
8.B
9.B
10.A
11.
12.
13.5;
14.( +1,+1)
15.
16.4
17.(1)(2)
18.(1)2;(2)(3)①16+4π②存在,m=1,m=3,m=
19.(1) 略(2) 等腰三角形
20.(1)略(2)2
21.(1)略(2)不正确,
22.解:(1)PO与BC的位置关系是PO∥BC。
(2)(1)中的结论PO∥BC成立。理由为:
由折叠可知:△APO≌△CPO,∴∠APO=∠CPO。
又∵OA=OP,∴∠A=∠APO。∴∠A=∠CPO。
又∵∠A与∠PCB都为所对的圆周角,∴∠A=∠PCB。∴∠CPO=∠PCB。
∴PO∥BC。
(3)证明:∵CD为圆O的切线,∴OC⊥CD。
又∵AD⊥CD,∴OC∥AD。∴∠APO=∠COP。
由折叠可得:∠AOP=∠COP,∴∠APO=∠AOP。
又∵OA=OP,∴∠A=∠APO。∴∠A=∠APO=∠AOP。∴△APO为等边三角形。
∴∠AOP=60°。
又∵OP∥BC,∴∠OBC=∠AOP=60°。
又∵OC=OB,∴△BC为等边三角形。∴∠COB=60°。
∴∠POC=180°﹣(∠AOP+∠COB)=60°。
又∵OP=OC,∴△POC也为等边三角形。∴∠PCO=60°,PC=OP=OC。
又∵∠OCD=90°,∴∠PCD=30°。
在Rt△PCD中,PD=PC,
又∵PC=OP=AB,∴PD=AB,即AB=4PD。
23.(1)证明略 (2)
24.解:(1)∵DE是⊙O的切线,且DF过圆心O
∴DF⊥DE
又∵AC∥DE
∴DF⊥AC
∴DF垂直平分AC
(2)由(1)知:AG=GC
又∵AD∥BC
∴∠DAG=∠FCG
又∵∠AGD=∠CGF
∴△AGD≌△CGF(ASA)
∴AD=FC
∵AD∥BC且AC∥DE
∴四边形ACED是平行四边形
∴AD=CE
∴FC=CE
连结AO;
∵AG=GC,AC=8cm,∴AG=4cm
在Rt△AGD中,由勾股定理得 GD=
设圆的半径为r,则AO=r,OG=r-3
在Rt△AOG中,由勾股定理得 AO2=OG2+AG2
有:r2=(r-3)2+42解得 r=
∴⊙O的半径为cm.
25.连OM,ON,如图,
∵M,N分别为AB,CD的中点,
∴OM⊥AB,ON⊥CD,
∴∠AMO=∠CNO=90°,
∵AB=CD,
∴OM=ON,
∴∠OMN=∠ONM,
∴∠AMN=∠CNM.