人教版八年级数学下册册20.1.1平均数 课件(共17张PPT)

文档属性

名称 人教版八年级数学下册册20.1.1平均数 课件(共17张PPT)
格式 ppt
文件大小 652.0KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2022-04-08 16:46:48

图片预览

文档简介

(共17张PPT)
义务教育教科书( RJ )八年级数学下册
数据2、3、4、1、2的平均数是________,这个平均数叫做_________平均数.
2.4
算术
日常生活中,我们常用平均数表示一组数据的“平均水平”
问题1:一家公司打算招聘一名英文翻译,对甲、乙 两位应试者进行了听、说、读、写、的英语水平测试,他们的各项成绩如表所示:
(1)如果公司想招一名综合能力较强的翻译,请计算两名应试者的平均成绩,应该录用谁?
应试者 听 说 读 写
甲 85 78 85 73
乙 73 80 82 83
探究一、
乙的平均成绩为   
  显然甲的成绩比乙高,所以从成绩看,应该录取甲.
我们常用平均数
表示一组数据的“平
均水平”.
应试者 听 说 读 写
甲 85 78 85 73
乙 73 80 82 83
解: 甲的平均成绩为
  (2)如果公司想招一名笔译能力较强的翻译,用
算术平均数来衡量他们的成绩合理吗?
应试者 听 说 读 写
甲 85 78 85 73
乙 73 80 82 83
听、说、读、写的成绩按照2:1:3:4的比确定.
重要程度
不一样!
应试者 听 说 读 写
甲 85 78 85 73
乙 73 80 82 83
2 : 1 : 3 : 4
因为乙的成绩比甲高,所以应该录取乙.  
解:
4
3
1
2
权 
  思考 能把这种加权平均数的计算方法推广到一般 吗?
  一般地,若n个数x1,x2,…,xn的权分别
是w1,w2,…,wn,则
叫做这n个数的加权平均数.
  问题4 与问题(1)、(2)、(3)比较,你能体
会到权的作用吗?
  思考:如果公司想招一名口语能力较强的翻译,则应该录取谁?
应试者 听 说 读 写
甲 85 78 85 73
乙 73 80 82 83
听、说、读、写的成绩按照3:3:2:2的比确定.
探究二、
3 : 3 : 2 : 2
例1: 一次演讲比赛中,评委将从演讲内容,演讲能力,演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例,计算选手的综合成绩(百分制)。进入决赛的前两名选手的单项成绩如下表所示:
请决出两人的名次。
选手 演讲内容 演讲能力 演讲效果
A 85 95 95
B 95 85 95
探究三、
选手 演讲内容 演讲能力 演讲效果
A 85 95 95
B 95 85 95
权 50% 40% 10%
解:选手A的最后得分是
选手B的最后得分是
由上可知选手B获得第一名,选手A获得第二名.
你能说说算术平均数与加权平均数的区别和联系吗?
2、在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用算术平均数。
1、算术平均数是加权平均数的一种特殊情况(它特殊在各项的权相等)
做一做、1.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下表所示:
候选人 测试成绩(百分制)
面试 笔试
甲 86 90
乙 92 83
(1)如果公司认为,面试和笔试成绩同等重要,从他们的成绩看,谁将被录取?
(2)如果公司认为,作为公关人员面试成绩应该比笔试成绩更重要,并分别赋于它们6和4的权,计算甲、乙两人各自的平均成绩,看看谁将被录取?
 2.晨光中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐的三项成绩(百分制)依次是95分、90分、85分,小桐这学期的体育成绩是多少?
(1)加权平均数在数据分析中的作用是什么?
当一组数据中各个数据重要程度不同时,加权平
均数能更好地反映这组数据的平均水平.
(2)权的作用是什么?
权反映数据的重要程度,数据权的改变一般会影
响这组数据的平均水平.
1、已知:x1,x2,x3… x10的平均数是a,
x11,x12,x13… x30的平均数是b,则
x1,x2,x3… x30的平均数是( )
D
(10a+30b)
(A)
(a+b)
(B)
(a+b)
(C)
(10a+20b)
(D)
2.某校八年级一班有学生50人,八年级二班有学生45人,期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分为83.4分,这两个班95名学生的平均分是多少?
解:(81.5×50 +83.4×45)÷95
=7828÷95
=82.4
答:这两个班95名学生的平均分是82.4分.
3.某班进行个人投篮比赛,受了污损的下表记录了在规定时间内投进n个球的人数分布情况:
同时,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均投进2.5个球,问投进3个球和4个球的各有多少人?
进球数n 0 1 2 3 4 5
投进n球的人数 1 2 7 2