中小学教育资源及组卷应用平台
专题8.1 幂的运算
【典例1】根据题意,完成下列问题.
(1)若2m=8,2n=32,求22m﹣n的值;
(2)已知2x+3y﹣3=0,求4x 8y的值;
(3)已知2x+2 5x+2=103x﹣3,求x的值.
【思路点拨】
(1)直接利用同底数幂的除法运算法则以及幂的乘方运算法则将原式变形,进而得出答案;
(2)直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形,进而得出答案;
(3)直接利用同底数幂的乘法运算法则以及积的乘方运算法则将原式变形,进而得出答案.
【解题过程】
解:(1)∵2m=8,2n=32,
∴22m﹣n=(2m)2÷2n=82÷32=64÷32=2;
∴22m﹣n的值为2;
(2)∵2x+3y﹣3=0,
∴2x+3y=3,
∴4x 8y=22x 23y=22x+3y=23=8;
∴4x 8y的值为8;
(3)∵2x+2 5x+2=103x﹣3,
∴10x+2=103x﹣3,
∴x+2=3x﹣3,
∴,
∴x的值为.
1.(2021秋 营口期末)下列计算正确的是( )
A.x8÷x4=x2 B.x3 x4=x12
C.(﹣x2y3)2=﹣x4y6 D.(x3)2=x6
2.(2021春 莱阳市期末)已知10a=5,10b=2,则103a+2b﹣1的值为 .
3.(2021秋 开福区校级期中)已知2a=3,4b=5,则42a+b﹣1= .
4.(2021春 涡阳县期末)若3x=5,3y=4,9z=2,则32x+y﹣4z的值为 .
5.(2020春 简阳市 期中)已知:(x3n﹣2)2x2n+4÷xn=x2n﹣5,则n= .
6.(2021春 下城区期中)若4m×8n=64,2m÷4n,则mn的值为 .
7.(2021春 大丰区月考)计算:
(1). (2)0.252020×42021×(﹣8)100×0.5300.
(3)(m﹣1)3 (1﹣m)4+(1﹣m)5 (m﹣1)2. (4)(﹣a2)2 a5+a10÷a﹣(﹣2a3)3.
8.(2020秋 靖安县校级月考)若xm,xn=﹣5,求x2019m+2020n的值.
9.(2021春 姜堰区月考)已知4×16m×64m=421,求(﹣m2)3÷(m3 m2)的值.
10.(2020秋 德城区校级期中)已知4m=5,8n=3,3m=4,计算下列代数式:
①求:22m+3n的值;
②求:24m﹣6n的值;
③求:122m的值.
11.(2020春 盐田区校级月考)若32 92a+1÷27a+1=81,求a的值.
12.(2020秋 南城县期末)若mp,m2q=7,mr,求m3p+4q﹣2r的值
13.(2020春 仪征市期中)(1)已知am=5,,求a2m﹣3n的值;
(2)已知9m×27n=81,求(﹣2)2m+3n的值.
14.(2020秋 南昌期末)已知2a=4,2b=6,2c=12
(1)求证:a+b﹣c=1;
(2)求22a+b﹣c的值.
15.(2020 河北模拟)若am=an(a>0且a≠1,m、n是正整数),则m=n.利用上面结论解决下面的问题:
(1)如果2÷8x 16x=25,求x的值;
(2)如果2x+2+2x+1=24,求x的值;
(3)若x=5m﹣3,y=4﹣25m,用含x的代数式表示y.
16.(2021秋 襄汾县月考)在学习了“幂的运算法则”后,经常遇到比较幂的大小问题,对于此类问题,通常有两种解决方法,一种是将幂化为底数相同的形式,另一种是将幂化为指数相同的形式,请阅读下列材料:
若a3=2,b5=3,则a,b的大小关系是a b(填“<”或“>”);
解:∵a15=(a3)5=25=32,b15=(b5)3=33=27,且32>27
∴a15>b15
∴a>b
类比阅读材料的方法,解答下列问题:
(1)上述求解过程中,逆用了哪一条幂的运算性质 .
A.同底数幂的乘法;B.同底数幂的除法;C.幂的乘方;D.积的乘方.
(2)比较8131、2741、961的大小;
(3)比较2100与375的大小;
(4)比较1714与3111的大小;
(5)已知ma=108,mb=2,mc=27,求a,b,c之间的等量关系.
17.(2021春 盐都区月考)(1)已知a=2﹣44444,b=3﹣33333,c=5﹣22222,请用“<”把它们按从小到大的顺序连接起来,说明理由.
(2)请探索使得等式(2x+3)x+2020=1成立的x的值.
18.(2020秋 福州期中)阅读以下材料
对数的创始人是苏格兰数学家纳皮尔(J.Napier,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Euler,1707﹣1783年)才发现指数与对数之间的联系.
对数的定义:一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=logaN.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:loga(MN)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:
设logaM=m,logaN=n,则M=am,N=an.
∴MN=aman=am+n.由对数的定义,得,m+n=loga(MN).
又∵m+n=logaM+logaN,
∴loga(MN)=logaM+logaN.
解决问题:
(1)将指数43=64转化为对数式 ;计算:log28= ;
(2)求证:(a>0,a≠1,M>0,N>0);
(3)拓展运用:计算log32+log36﹣log34.
19.(2020秋 天台县期末)规定:求若干个相同的有理数(不等于0)的除法运算叫做除方,如2÷2÷2÷2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,我们把(a≠0)记作a ,读作“a的圈n次方”.
(1)直接写出计算结果:2③= ,④= .
(2)有理数的除方可以转化为乘方幂的形式.如(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)
直接将下列的除方形式写成乘方幂的形式:(﹣2)④= ;5 = .
(3)计算:22018×.
20.(2021春 岳麓区月考)定义:如果2m=n(m,n为正数),那么我们把m叫做n的D数,记作m=D(n).
(1)根据D数的定义,填空:D(2)= ,D(16)= .
(2)D数有如下运算性质:D(s t)=D(s)+D(t),D()=D(q)﹣D(p),其中q>p.
根据运算性质,计算:
①若D(a)=1,求D(a3);
②若已知D(3)=2a﹣b,D(5)=a+c,试求D(15),D(),D(108),D()的值(用a、b、c表示).
21.(2021春 安庆期末)规定两数a,b之间的种运算,记作(a,b):如果ac=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.
(1)根据上述规定,填空:(5,125)= ;(5,1)= ;(2,)= ;
(2)小明在研究这种运算时发现一个特例:对任意的正整数n,(3n,4n)=(3,4).小明给了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4)请根据以上规律:计算:(16,10000)﹣(64,1000000).
(3)证明下面这个等式:(3,20)﹣(3,4)=(3,5).
22.(2021春 金牛区校级月考)如果10b=n,那么b为n的“劳格数”,记为b=d(n).由定义可知:10b=n与b=d(n)表示b、n两个量之间的同一关系.
(1)根据“劳格数”的定义,填空:d(10)= ,d(10﹣2)= .
(2)“劳格数”有如下运算性质:
若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n);
根据运算性质,填空: ,(a为正数)
(3)若d(2)=0.3010,分别计算d(4);d(5);d(0.08).
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题8.1 幂的运算
【典例1】根据题意,完成下列问题.
(1)若2m=8,2n=32,求22m﹣n的值;
(2)已知2x+3y﹣3=0,求4x 8y的值;
(3)已知2x+2 5x+2=103x﹣3,求x的值.
【思路点拨】
(1)直接利用同底数幂的除法运算法则以及幂的乘方运算法则将原式变形,进而得出答案;
(2)直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形,进而得出答案;
(3)直接利用同底数幂的乘法运算法则以及积的乘方运算法则将原式变形,进而得出答案.
【解题过程】
解:(1)∵2m=8,2n=32,
∴22m﹣n=(2m)2÷2n=82÷32=64÷32=2;
∴22m﹣n的值为2;
(2)∵2x+3y﹣3=0,
∴2x+3y=3,
∴4x 8y=22x 23y=22x+3y=23=8;
∴4x 8y的值为8;
(3)∵2x+2 5x+2=103x﹣3,
∴10x+2=103x﹣3,
∴x+2=3x﹣3,
∴,
∴x的值为.
1.(2021秋 营口期末)下列计算正确的是( )
A.x8÷x4=x2 B.x3 x4=x12
C.(﹣x2y3)2=﹣x4y6 D.(x3)2=x6
【思路点拨】
直接利用同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.
【解题过程】
解:A.x8÷x4=x4,故此选项不合题意;
B.x3 x4=x7,故此选项不合题意;
C.(﹣x2y3)2=x4y6,故此选项不合题意;
D.(x3)2=x6,故此选项符合题意;
故选:D.
2.(2021春 莱阳市期末)已知10a=5,10b=2,则103a+2b﹣1的值为 .
【思路点拨】
把同底数幂的乘除运算法则及幂的乘方运算法则逆用,变形103a+2b﹣1代入计算,即可求出结果.
【解题过程】
解:∵10a=5,10b=2,
∴103a+2b﹣1=103a×102b÷10=(10a)3×(10b)2÷10=53×22÷10=50,
故答案为:50.
3.(2021秋 开福区校级期中)已知2a=3,4b=5,则42a+b﹣1= .
【思路点拨】
利用同底数幂的乘法的法则,同底数幂的除法法则以及幂的乘方的法则对所求的式子进行整理,再代入相应的数值运算即可.
【解题过程】
解:∵2a=3,4b=5,
∴42a+b﹣1
=42a×4b÷4
=(4a)2×4b÷4
=(2a)4×4b÷4
=34×5÷4
=81×5÷4
=405÷4
.
故答案为:.
4.(2021春 涡阳县期末)若3x=5,3y=4,9z=2,则32x+y﹣4z的值为 .
【思路点拨】
逆向运算同底数幂的乘法法则和除法法则,结合幂的乘方运算法则计算即可.
【解题过程】
解:∵3x=5,3y=4,9z=32z=2,
∴32x+y﹣4z
=32x 3y÷34z
=(3x)2 3y÷(32z)2
=52×4÷22
=25.
故答案为:25.
5.(2020春 简阳市 期中)已知:(x3n﹣2)2x2n+4÷xn=x2n﹣5,则n= .
【思路点拨】
根据同底数幂的乘法与除法,幂的乘方与积的乘方的运算性质把要求的式子进行整理,得出7n=2n﹣5,求出n的值即可.
【解题过程】
解:∵(x3n﹣2)2x2n+4÷xn=x2n﹣5,
x6n﹣4x2n+4÷xn=x8n÷xn=x7n=x2n﹣5,
∴7n=2n﹣5,
∴n=﹣1.
故答案为:﹣1.
6.(2021春 下城区期中)若4m×8n=64,2m÷4n,则mn的值为 .
【思路点拨】
逆向运用幂的乘方运算法则可得22m 23n=26,根据同底数幂的乘法法则可得2m+3n=6①,逆向运用幂的乘方运算法则可得2m÷22n=2﹣5,根据同底数幂的除法法则可得m﹣2n=﹣5②,①+②可得3(mn)=1,据此可得mn的值.
【解题过程】
解:∵4m×8n=64,
∴22m 23n=26,
∴2m+3n=6①,
∵2m÷4n,
∴2m÷22n=2﹣5,
∴m﹣2n=﹣5②,
①+②得3(mn)=1,
∴mn.
故答案为:.
7.(2021春 大丰区月考)计算:
(1).
(2)0.252020×42021×(﹣8)100×0.5300.
(3)(m﹣1)3 (1﹣m)4+(1﹣m)5 (m﹣1)2.
(4)(﹣a2)2 a5+a10÷a﹣(﹣2a3)3.
【思路点拨】
(1)根据负整数指数幂的定义,零指数幂的定义以及同底数幂的除法法则计算即可;
(2)根据积的乘以运算法则的逆向运用即可计算;
(3)根据同底数幂的乘法法则计算即可;
(4)分别根据幂的乘方运算法则,同底数幂的乘除法法则以及积的乘方运算法则化简即可.
【解题过程】
解:(1)原式=9+1﹣5
=5;
(2)原式
=1×4×(﹣1)300
=4×1
=4;
(3)原式=(m﹣1)7﹣(m﹣1)7=0;
(4)原式=a4 a5+a9+8a9
=a9+a9+8a9
=10a9.
8.(2020秋 靖安县校级月考)若xm,xn=﹣5,求x2019m+2020n的值.
【思路点拨】
根据积的乘方与幂的乘方、同底数幂的乘法是解决本题的关键.
【解题过程】
解:∵xm,xn=﹣5,
∴x2019m+2020n=(xm)2019 (xn)20205.
9.(2021春 姜堰区月考)已知4×16m×64m=421,求(﹣m2)3÷(m3 m2)的值.
【思路点拨】
先根据幂的乘方和积的乘方得出5m+1=21,求出m的值,再算乘方,算除法,最后代入求出即可.
【解题过程】
解:∵4×16m×64m=421,
∴41+2m+3m=421,
∴5m+1=21,
∴m=4,
∴(﹣m2)3÷(m3 m2)
=﹣m6÷m5
=﹣m
=﹣4.
10.(2020秋 德城区校级期中)已知4m=5,8n=3,3m=4,计算下列代数式:
①求:22m+3n的值;
②求:24m﹣6n的值;
③求:122m的值.
【思路点拨】
①根据幂的乘方运算法则可得4m=22m=5,8n=23m=3,再根据同底数幂的乘法法则计算即可;
②由22m=5,23m=3,根据同底数幂的除法法则以及幂的乘方运算法则计算即可;
③根据积的乘方运算法则可得122m=(3×4)2n=32m×42m,再根据幂的乘方运算法则计算即可.
【解题过程】
解:4m=22m=5,8n=23n=3,3m=4,
①22m+3n=22m 23n=5×3=15;
②24m﹣6n=24m÷26n=(22m)2÷(23n)2;
③122m=(3×4)2m=32m×42m=(3m)2×(4m)2=42×52=16×25=400.
11.(2020春 盐田区校级月考)若32 92a+1÷27a+1=81,求a的值.
【思路点拨】
直接利用幂的乘方运算法则以及同底数幂的除法运算法则计算得出答案
【解题过程】
解:∵32 92a+1÷27a+1=81,
∴32 34a+2÷33a+3=34,
∴2+4a+2﹣3a﹣3=4,
解得:a=3.
12.(2020秋 南城县期末)若mp,m2q=7,mr,求m3p+4q﹣2r的值
【思路点拨】
直接利用同底数幂的乘除运算法则将原式变形得出答案.
【解题过程】
解:∵mp,m2q=7,mr,
∴m3p+4q﹣2r=(mp)3×(m2q)2÷(mr)2
49
49
.
13.(2020春 仪征市期中)(1)已知am=5,,求a2m﹣3n的值;
(2)已知9m×27n=81,求(﹣2)2m+3n的值.
【思路点拨】
(1)根据幂的乘方以及同底数幂的除法法则计算即可;
(2)根据幂的乘方以及同底数幂的乘法法则求出2m+3n的值,再代入所求式子计算即可.
【解题过程】
解:(1)∵am=5,,
∴a2m﹣3n=(am)2÷(an)3200;
(2)∵9m×27n=32m 33n=32m+3n=81=34,
∴2m+3n=4,
∴(﹣2)2m+3n=(﹣2)4=16.
14.(2020秋 南昌期末)已知2a=4,2b=6,2c=12
(1)求证:a+b﹣c=1;
(2)求22a+b﹣c的值.
【思路点拨】
(1)根据同底数幂的乘法和除法法则进行证明即可;
(2)根据同底数幂的乘法和除法法则进行计算即可.
【解题过程】
(1)证明:∵2a=4,2b=6,2c=12,
∴2a×2b÷2=4×6÷2=12=2c,
∴a+b﹣1=c,
即a+b﹣c=1;
(2)解:∵2a=4,2b=6,2c=12,
∴22a+b﹣c=(2a)2×2b÷2c
=16×6÷12=8.
15.(2020 河北模拟)若am=an(a>0且a≠1,m、n是正整数),则m=n.利用上面结论解决下面的问题:
(1)如果2÷8x 16x=25,求x的值;
(2)如果2x+2+2x+1=24,求x的值;
(3)若x=5m﹣3,y=4﹣25m,用含x的代数式表示y.
【思路点拨】
(1)根据幂的乘方运算法则把8x与16x化为底数为2的幂,再根据同底数幂的乘除法法则解答即可;
(2)根据同底数幂的乘法法则把2x+2+2x+1=24变形为2x(22+2)=24即可解答;
(3)由x=5m﹣3可得5m=x+3,再根据幂的乘方运算法则解答即可.
【解题过程】
解:(1)2÷8x 16x=2÷(23)x (24)x=2÷23x 24x=21﹣3x+4x=25,
∴1﹣3x+4x=5,
解得x=4;
(2)∵2x+2+2x+1=24,
∴2x(22+2)=24,
∴2x=4,
∴x=2;
(3)∵x=5m﹣3,
∴5m=x+3,
∵y=4﹣25m=4﹣(52)m=4﹣(5m)2=4﹣(x+3)2,
∴y=﹣x2﹣6x﹣5.
16.(2021秋 襄汾县月考)在学习了“幂的运算法则”后,经常遇到比较幂的大小问题,对于此类问题,通常有两种解决方法,一种是将幂化为底数相同的形式,另一种是将幂化为指数相同的形式,请阅读下列材料:
若a3=2,b5=3,则a,b的大小关系是a b(填“<”或“>”);
解:∵a15=(a3)5=25=32,b15=(b5)3=33=27,且32>27
∴a15>b15
∴a>b
类比阅读材料的方法,解答下列问题:
(1)上述求解过程中,逆用了哪一条幂的运算性质 .
A.同底数幂的乘法;B.同底数幂的除法;C.幂的乘方;D.积的乘方.
(2)比较8131、2741、961的大小;
(3)比较2100与375的大小;
(4)比较1714与3111的大小;
(5)已知ma=108,mb=2,mc=27,求a,b,c之间的等量关系.
【思路点拨】
(1)根据幂的乘方法则判断;
(2)根据幂的乘方法则的逆运算计算;
(3)根据幂的乘方法则的逆运算计算;
(4)根据幂的乘方法则的逆运算计算;
(5)根据同底数幂的乘法法则计算.
【解题过程】
解:(1)上述求解过程中,逆用幂的乘方,
故选:C;
(2)8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,
则8131>2741>961;
(3)2100=(24)25=1625,375=(33)25=2725,
则2100<375;
(4)1714>1614,
∴1714>256>255,
∵255=3211,3211>3111,
∴1714>3111;
(5)∵108=4×27=22×27,
∴ma=(mb)2×mc,
∴ma=m2b×mc,
∴ma=m2b+c,
∴a=2b+c.
17.(2021春 盐都区月考)(1)已知a=2﹣44444,b=3﹣33333,c=5﹣22222,请用“<”把它们按从小到大的顺序连接起来,说明理由.
(2)请探索使得等式(2x+3)x+2020=1成立的x的值.
【思路点拨】
(1)首先把负整数指数的幂化为11111,然后进行比较,即可得出答案;
(2)等式的值为1,可以是非零数的0次幂,也可以是1的任何次方,也可以是﹣1的偶次幂,分别计算即可.
【解题过程】
解:(1)a>c>b,理由如下:
a=(2﹣4)11111=()11111=()11111,
b=(3﹣3)11111=()11111=()11111,
c=(5﹣2)11111=()11111=()11111,
∵,
∴()11111>()11111>()11111,
∴a>c>b;
(2)当x+2020=0时,x=﹣2020,此时2x+3=﹣4037≠0,符合题意;
当2x+3=1时,x=﹣1,符合题意;
当2x+3=﹣1时,x=﹣2,此时x+2020=2018,符合题意.
综上所述,x=﹣2或﹣1或﹣2020.
18.(2020秋 福州期中)阅读以下材料
对数的创始人是苏格兰数学家纳皮尔(J.Napier,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Euler,1707﹣1783年)才发现指数与对数之间的联系.
对数的定义:一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=logaN.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:loga(MN)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:
设logaM=m,logaN=n,则M=am,N=an.
∴MN=aman=am+n.由对数的定义,得,m+n=loga(MN).
又∵m+n=logaM+logaN,
∴loga(MN)=logaM+logaN.
解决问题:
(1)将指数43=64转化为对数式 ;计算:log28= ;
(2)求证:(a>0,a≠1,M>0,N>0);
(3)拓展运用:计算log32+log36﹣log34.
【思路点拨】
(1)根据题意可以把指数式43=64写成对数式;
(2)先设logaM=m,logaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算 的结果,同理由所给材料的证明过程可得结论;
(3)根据公式:loga(M N)=logaM+logaN和logalogaM﹣logaN的逆用,将所求式子表示为:log3(2×6÷4),算可得结论.
【解题过程】
解:(1)由题意可得,指数式43=64写成对数式为:3=log464,
∵23=8,
∴log28=3.
故答案为:3=log464;3;
(2)设logaM=m,logaN=n,则M=am,N=an,
∴am﹣n,由对数的定义得m﹣n=loga,
又∵m﹣n=logaM﹣logaN,
∴logalogaM﹣logaN(a>0,a≠1,M>0,N>0);
(3)原式=log3(2×6÷4)
=log33
=1.
19.(2020秋 天台县期末)规定:求若干个相同的有理数(不等于0)的除法运算叫做除方,如2÷2÷2÷2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,我们把(a≠0)记作a ,读作“a的圈n次方”.
(1)直接写出计算结果:2③= ,④= .
(2)有理数的除方可以转化为乘方幂的形式.如(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)
直接将下列的除方形式写成乘方幂的形式:(﹣2)④= ;5 = .
(3)计算:22018×.
【思路点拨】
(1)利用题中的新定义计算即可求出值;
(2)利用题中的新定义计算即可求出值;
(3)原式变形后,计算即可求出值.
【解题过程】
解:(1)2③=2÷2÷2,
④.
故答案为:,4
(2)(﹣2)④=(﹣2)÷(﹣2)÷(﹣2)÷(﹣2),
5 .
故答案为:2,.
(3)22018×4.
20.(2021春 岳麓区月考)定义:如果2m=n(m,n为正数),那么我们把m叫做n的D数,记作m=D(n).
(1)根据D数的定义,填空:D(2)= ,D(16)= .
(2)D数有如下运算性质:D(s t)=D(s)+D(t),D()=D(q)﹣D(p),其中q>p.
根据运算性质,计算:
①若D(a)=1,求D(a3);
②若已知D(3)=2a﹣b,D(5)=a+c,试求D(15),D(),D(108),D()的值(用a、b、c表示).
【思路点拨】
本题属于阅读题,根据给出的定义进行运算或化简.
【解题过程】
解:(1)∵21=2,
∴D(2)=1,
∵24=16,
∴D(16)=4,
故答案为:1;4.
(2)①∵21=a,
∴a=2.
∴23=23.
∴D(a3)=3.
②D(15)=D(3×5),
=D(3)+D(5)
=(2a﹣b)+(a+c)
=3a﹣b+c,
=(a+c)﹣(2a﹣b)
=﹣a+b+c.
D(108)=D(3×3×3×2×2),
=D(3)+D(3)+D(3)+D(2)+D(2)
=3×D(3)+2×D(2)
=3×(2a﹣b)+2×1
=6a﹣3b+2.
,
=D(3×3×3)﹣D(5×2×2)
=D(3)+D(3)+D(3)﹣[D(5)+D(2)+D(2)]
=3×D(3)﹣[D(5)+2D(2)]
=3×(2a﹣b)﹣[a+c+2×1]
=6a﹣3b﹣a﹣c﹣2
=5a﹣3b﹣c﹣2,
21.(2021春 安庆期末)规定两数a,b之间的种运算,记作(a,b):如果ac=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.
(1)根据上述规定,填空:(5,125)= ;(5,1)= ;(2,)= ;
(2)小明在研究这种运算时发现一个特例:对任意的正整数n,(3n,4n)=(3,4).小明给了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4)请根据以上规律:计算:(16,10000)﹣(64,1000000).
(3)证明下面这个等式:(3,20)﹣(3,4)=(3,5).
【思路点拨】
(1)根据题目中的规定,进行运算即可得出结果;
(2)(16,10000)可转化为(24,104),(64,1000000)可转化为(26,106),从而可求解;
(3)设(3,20)=x,(3,4)=y,则3x=20,3y=4,从而可得3x÷3y=5,得3x﹣y=5,即有(3,5)=x﹣y,从而得证.
【解题过程】
解:(1)∵53=125,
∴(5,125)=3;
∵50=1,
∴(5,1)=0;
∵,
∴(2,)=﹣2.
故答案为:3,0,﹣2;
(2)(16,10000)﹣(64,1000000)
=(24,104)﹣(26,106)
=(2,10)﹣(2,10)
=0;
(3)证明:设(3,20)=x,(3,4)=y,
则3x=20,3y=4,
∴3x÷3y,
=20÷4,
=5,
∴3x﹣y=5,
∴(3,5)=x﹣y,
又∵(3,20)﹣(3,4)=x﹣y,
∴(3,20)﹣(3,4)
=(3,5)
22.(2021春 金牛区校级月考)如果10b=n,那么b为n的“劳格数”,记为b=d(n).由定义可知:10b=n与b=d(n)表示b、n两个量之间的同一关系.
(1)根据“劳格数”的定义,填空:d(10)= ,d(10﹣2)= .
(2)“劳格数”有如下运算性质:
若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n);
根据运算性质,填空: ,(a为正数)
(3)若d(2)=0.3010,分别计算d(4);d(5);d(0.08).
【思路点拨】
(1)利用题中的新定义计算即可求出值;
(2)利用题中的新定义计算即可求出值;
(3)利用题中的新定义计算即可求出值;
【解题过程】
解:(1)10b=10,∴b=1,
∴d(10)=1;
10b=10﹣2,∴b=﹣2,
∴d(10﹣2)=﹣2;
故答案为1,﹣2;
(2)3,
故答案为3;
(3)∵d(2)=0.3010,
∴d(4)=2d(2)=0.6020,
d(5)=d()=d(10)﹣d(2)=1﹣0.3010=0.699,
d(0.08)=d(8×10﹣2)=d(8)+d(10﹣2)=3d(2)﹣2=0.9030﹣2=﹣1.097.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)