粤教版(2019)选择性必修二 2.2 法拉第电磁感应定律
一、单选题
1.关于电磁感应现象,下列说法中正确的是( )
A.穿过线圈的磁通量越大,线圈内产生的感应电动势越大
B.穿过线圈的磁通量变化量越大,线圈内产生的感应电动势越大
C.穿过线圈的磁通量为零,线圈内产生的感应电动势一定为零
D.穿过线圈的磁通量变化越快,线圈内产生的感应电动势越大
2.如图所示的情况中,金属导体中产生的感应电动势为Blv的是( )
A.丙和丁 B.甲、乙、丁
C.甲、乙、丙、丁 D.只有乙
3.如图所示,竖直平面内有一金属圆环,半径为a,总电阻为R(指拉直时两端的电阻),磁感应强度为B的匀强磁场垂直穿过环平面,在环的最高点A用铰链连接长度为2a、电阻为的导体棒AB,AB由水平位置紧贴环面摆下,当摆到竖直位置时,B点的线速度为v,则这时AB两端的电压大小为( )
A. B. C. D.Bav
4.某同学搬运如图所示的磁电式电流表时,发现表针剧烈晃动且不易停止。该同学依据所学物理知识,在两接线柱间接一根导线后再次搬运,发现表针晃动明显减弱且很快停止。下列说法正确的是( )
A.电流表未接导线与接导线,均不会产生感应电动势
B.电流表未接导线时不产生感应电动势,接导线时产生感应电动势
C.电流表未接导线与接导线均不会产生感应电流
D.电流表未接导线时不产生感应电流,接导线时产生感应电流
5.如图所示,边长为L的正方形线圈处于磁感应强度大小为B的匀强磁场中,绕着与磁场垂直且与线圈共面的轴以角速度匀速转动,ab边距轴,则在该位置( )
A.ab边受到的安培力大小是cd边安培力大小的
B.ab边的动生电动势是cd边动生电动势的
C.线圈在该位置磁通量为0,感应电动势为0
D.ad边和bc边在该位置受到的安培力不为0
6.如图所示,匀强磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合,磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0,使该线框从静止开始绕过圆心O且垂直于半圆面的轴以角速度匀速转动半周,在线框中产生感应电流。现使线框保持图中所示位置不变,磁感应强度大小随时间线性变化。为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为( )
A. B. C. D.
7.将匝数为N的闭合线圈放在随时间变化的匀强磁场B中,线圈平面与磁场重直.依据法拉第探究的结果,下列关于线圈中产生的感应电动势E的表述正确的是( )
A.感应电动势E的大小与线圈的匝数N无关
B.穿过线圈的磁通量越大,感应电动势E越大
C.穿过线圈的磁通量变化越大,感应电动势E越大
D.匝数一定时,感应电动势E的大小正比于穿过线圈的磁通量的变化率
8.如图所示,M、N为两个用同种材料同规格的导线制成的单匝闭合圆环线圈,其圆环半径之比为2:1,两线圈置于同一个垂直于环面向里的匀强磁场中。若不考虑线圈之间的相互影响,当匀强磁场的磁感应强度随时间均匀增大时,下列判断中正确的是( )
A.两线圈中感应电动势之比EM:EN=2:1
B.两线圈中感应电流之比IM:IN=1:1
C.两线圈中感应电流的功率之比PM:PN=8:1
D.两线圈中感应电流的方向均为顺时针方向
9.如图,半径为L的半圆弧轨道PQS固定,电阻忽略不计,O为圆心。OM是可绕O转动的金属杆,M端位于PQS上,OM与轨道接触良好,OM金属杆的电阻值是OP金属杆电阻值的一半。空间存在如图的匀强磁场,磁感应强度的大小为B;现使OM从OS位置以恒定的角速度顺时针转到OQ位置,则该过程中( )
A.回路中M点电势高于O点电势
B.回路中电流方向沿
C.MO两点的电压
D.MO两点的电压
10.如图所示,两个半径均为r的半圆形线圈,分别以、为轴,以角速度匀速转动。左侧有垂直纸面向里、磁感应强度大小为B的匀强磁场,右侧线圈始终处在垂直纸面向里、磁感应强度大小为B的匀强磁场中。已知开关S接1时,灯泡正常发光,消耗的电功率为P,灯泡不会被烧坏且阻值恒定。则( )
A.开关S接2时,灯泡中的电流方向不变
B.开关S接1或2时,灯泡两端电压的最大值相同
C.开关S接2时,灯泡消耗的电功率为2P
D.仅左侧线圈转速加倍,开关S接1和2时灯泡的平均功率相同
11.如图所示,面积为S、匝数为n的线圈内有匀强磁场,已知磁感应强度随时间的变化规律为 (k>0且为常数,但未知),当t=0时磁场方向垂直纸面向里。在磁场方向改变之前,有一带电荷量为q、质量为m的粒子静止于水平放置的、间距为d的平行板电容器中间。(重力加速度为g)由此可以判断( )
A.此粒子带正电
B.磁感应强度的变化率为
C.当磁场方向改变后,该粒子将向下做加速运动
D.电容器所带电荷量与时间成正比
12.如图所示,一导体圆环位于纸面内,O为圆心。环内两个圆心角为90°的扇形区域内分别有匀强磁场,两磁场磁感应强度的大小相等,方向相反且均与纸面垂直。导体杆OM可绕O转动,M端通过滑动触点与圆环良好接触。在圆心和圆环间连有电阻R。杆OM以匀角速度逆时针转动,时恰好在图示位置。规定从b到a流经电阻R的电流方向为正,圆环和导体杆的电阻忽略不计,则杆从开始转动一周的过程中,电流随变化的图象是( )
A. B.
C. D.
13.如图所示,a、b两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长la=3lb,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( )
A.两线圈内产生顺时针方向的感应电流
B.a、b线圈中感应电动势之比为81:1
C.a、b线圈中感应电流之比为9:1
D.a、b线圈中电功率之比为27:1
14.如图所示的N匝金属线框,面积为S,处于磁感应强度为B的匀强磁场中,B的方向与线框平面成角,线框从图示实线位置,以线框ab为轴顺时针转过90°到虚线位置,所用时间为T,则该过程( )
A.在初始位置时,穿过线圈的磁通量
B.线框中磁通量的变化量
C.线框中感应电流方向先沿adcba方向再沿abcda方向
D.线框中产生的平均感应电动势为
15.如图所示,地面上方存在一个沿水平方向的磁场,以O点为坐标原点,水平向右为x轴,竖直向下为y轴,磁感应强度在相同高度处大小相等,竖直方向按分布。将一个矩形线框从图示位置水平向右抛出,运动过程中线框始终处于竖直平面内,且边保持水平,磁场区域足够大,不计空气阻力。关于线框下列说法正确的是( )
A.电流方向是
B.水平方向做匀减速运动
C.竖直方向做匀加速运动
D.最终斜向右下方做匀速运动
二、填空题
16.如图所示的区域内有垂直于纸面向里的匀强磁场,磁感应强度为B.电阻为R、半径为L、圆心角为45°的扇形闭合导线框绕垂直于纸面的O轴以角速度ω匀速转动(O轴位于磁场边界).则线框内产生的感应电流的有效值为__________.
17.如图所示,两块水平放置的金属板距离为d,用导线、开关K与一个n匝的线圈连接,线圈置于方向竖直向上的变化磁场B中.两板间放一台小压力传感器,压力传感器上表面静止放置一个质量为m、电荷量为+q的小球.K断开时传感器上有示数,K闭合时传感器上恰好无示数.则线圈中的磁场B的变化情况为________,磁通量变化率 =________ .
18.如图所示,线圈内有理想边界的磁场,当磁场均匀增加时,有一带电微粒静止于平行板(两板水平放置)电容器中间,若线圈的匝数为n,平行板电容器的板间距离为d,粒子质量为m,带电量为q,则磁感应强度的变化率为________(设线圈的面积为s)
三、解答题
19.如图所示,一水平放置的平行导体框宽度L=0.5m,接有R=0.2Ω的电阻,磁感应强度B=0.4T的匀强磁场垂直导轨平面方向向下,现有一导体棒ab跨放在框架上,并能无摩擦地沿框架滑动,框架及导体棒ab电阻不计,当ab以v=4.0m/s的速度向右匀速滑动时,试求:
(1)导体棒ab上的感应电动势的大小,并指出ab哪端电势高;
(2)回路中感应电流的大小;
(3)要维持ab向右匀速运动,作用在ab上的水平外力为多少。
20.如图所示,边长为100cm的正方形闭合线圈置于匀强磁场中,线圈ab、cd两边中点连线OO′的左右两侧分别存在方向相同、磁感应强度大小各为B1=0.6T,B2=0.40T的匀强磁场,若从上往下看,线圈逆时针方向转过37°时,穿过线圈的磁通量改变了多少?线圈从初始位置转过180°时,穿过线圈平面的磁通量改变了多少?
21.在范围足够大、方向竖直向下的匀强磁场中,B=0.2 T,有一水平放置的光滑框架,宽度为l=0.4 m,如图所示,框架上放置一质量为0.05 kg、接入电路的电阻为1 Ω的金属杆cd,金属杆与框架垂直且接触良好,框架电阻不计。若cd杆在水平外力的作用下以恒定加速度a=2 m/s2由静止开始向右沿框架做匀变速直线运动,则:
(1)在5 s内,回路产生的平均感应电动势是多大?
(2)第5 s末,回路中的电流是多大?
(3)第5 s末,作用在cd杆上的水平外力大小为多少?
22.如图所示,水平轨道与半径为r的半圆弧形轨道平滑连接于S点,两者均光滑且绝缘,并安装在固定的竖直绝缘平板上。在平板的上下各有一块相互正对的水平金属板P、Q,两板间的距离为d。半圆轨道的最高点T、最低点S、及P、Q板右侧边缘点在同一竖直线上。装置左侧有一半径为L的水平金属圆环,圆环平面区域内有竖直向下、磁感应强度大小为B的匀强磁场,一根长度略大于L的金属棒一端置于圆环上,另一端与过圆心的竖直转轴连接,转轴带动金属杆转动,在圆环边缘和转轴处引出导线分别与P、Q连接,图中电阻阻值为R,不计其它电阻。右侧水平轨道上有一带电量为+q、质量为的小球1以速度向左运动,与前面静止的、质量也为的不带电小球2发生碰撞,碰后粘合在一起共同向左运动,小球和粘合体均可看作质点,碰撞过程没有电荷损失,设P、Q板正对区域间才存在电场。重力加速度为g。
(1)计算小球1与小球2碰后粘合体的速度大小v;
(2)若金属杆转动的角速度为ω,计算图中电阻R消耗的电功率P;
(3)要使两球碰后的粘合体能从半圆轨道的最低点S做圆周运动到最高点T,计算金属杆转动的角速度的范围。
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.D
【详解】
根据法拉第电磁感应定律可知穿过线圈的磁通量变化越快,线圈内产生的感应电动势越大,而感应电动势与穿过线圈的磁通量、穿过线圈的磁通量变化量大小均无直接的关系,穿过线圈的磁通量为零,线圈内产生的感应电动势不一定为零,故ABC错误,D正确。
故选D。
2.B
【详解】
根据动生电动势公式
E=Blv
其中的l应指导体的有效切割长度,甲、乙、丁中的有效切割长度均为l,则电动势E=Blv;而丙的有效切割长度为0,则电动势为0。
故选B。
3.A
【详解】
AB杆产生的感应电动势
AB相当于电源,AB两端电压是路端电压,AB在竖直位置时,两半圆环并联的电阻为
电路电流
AB两端电压
U=IR外
解得
故选A。
4.D
【详解】
电流表未接导线与接导线时,表针晃动的过程中均会带动内部线圈切割磁感线,从而产生感应电动势,而未接导线时不是闭合回路,不会产生感应电流,接导线时构成闭合回路,会产生感应电流,从而阻碍表针的晃动。综上所述可知ABC错误,D正确。
故选D。
5.B
【详解】
C.线圈在该位置磁通量为0,但磁通量的变化率最大,感应电动势最大,C错误;
AD.在该位置回路电流最大,ab边受到的安培力和cd边受到的安培力大小相等,ab边和bc边的电流方向和磁场方向平行,受到的安培力为0,A、D错误;
B.ab边切割磁感线的速度是cd边切割磁感线速度的,根据
ab边的动生电动势是cd边动生电动势的,B正确。
故选B。
6.A
【详解】
若要产生的电流相等,则产生的感应电动势应相等。设半圆半径的长度为L,从静止开始绕过圆心O以角速度ω匀速转动时,线框中产生的感应电动势大小为
根据法拉第电磁感应定律得
联立可得
故BCD错误,A正确。
故选A。
7.D
【详解】
根据法拉第电磁感应定律
A.可知感应电动势E的大小与线圈的匝数N有关,故A错误;
BC.穿过线圈的磁通量变化率越大,感应电动势E越大,故BC错误;
D.匝数一定时,感应电动势E的大小正比于穿过线圈的磁通量的变化率,故D正确。
故选D。
8.C
【详解】
A.根据法拉第电磁感应定律有
由题知圆环半径之比
所以
选项A错误;
B.根据电阻定律有
所以电阻之比
则两线圈中感应电流之比
选项B错误;
C.两线圈中感应电流的功率之比
选项C正确;
D.当匀强磁场的磁感应强度随时间均匀增大时,根据楞次定律和右手螺旋定则可知两线圈中感应电流的方向均为逆时针方向,选项D错误。
故选C。
9.A
【详解】
AB.由右手定则可知,回路中电流方向沿,回路中M点电势高于O点电势,选项A正确,B错误;
CD. 感应电动势
设MO电阻为R,则PO电阻为2R,MO两点的电压
选项CD错误。
故选A。
10.B
【详解】
A.假设左侧线圈从图示位置绕轴向外转动,前四分之一圈线圈磁通量先减小到零,之后半圈磁通量为零,后四分之一圈磁通量由零增大,由楞次定律可知回路中电流方向发生改变,A错误;
B.结合法拉第电磁感应定律可知,两线圈角速度相同时,产生的感应电动势的最大值相等,B正确;
C.结合磁场分布可知,左侧线圈中只有半个周期内有电流通过,又产生感应电动势的最大值相等,则一个周期内开关S接2时灯泡消耗的功率为开关S接1时灯泡消耗功率的一半,C错误;
D.线圈转速加倍,产生的感应电动势的最大值加倍,设灯泡电阻为R,接1时两端电压最大值为,灯泡一个周期内的平均功率为
左侧线圈转速加倍后,线圈产生感应电动势的最大值为,灯泡一个周期内的平均功率为
可知开关S接1和2时的灯泡平均功率不同,D错误。
故选B。
11.B
【详解】
A.由楞次定律可知,平行板电容器上极板带正电,下极板带负电,极板间场强竖直向下,粒子在极板间静止,粒子所受静电力竖直向上,静电力方向与场强方向相反,粒子带负电,A错误;
B.由法拉第电磁感应定律可知,感应电动势
粒子静止时处于平衡状态,由平衡条件得
解得
B正确;
C.由楞次定律可知,当磁场方向改变后,感应电动势不变,粒子受力情况不变,粒子仍静止不动,C错误;
D.电容器两极板间电势差
电容器所带电荷量
Q与时间无关,D错误。
故选B。
12.C
【详解】
杆OM以匀角速度逆时针转动,时恰好进入磁场,故内有感应电流通过电阻,根据右手定则可以判断,感应电流方向从M指向圆心O,再经b到电阻R到a,故电流方向与规定的正方向相反,为负值。在内,由于没有磁场,则没有感应电流产生。在内,杆OM又进入磁场切割磁感线,产生感应电流,根据右手定则可以判断电流方向为从圆心O指向M,再经过a到电阻R到b,与规定正方向相同,为正值。在内,由于没有磁场,则没有感应电流产生。
故选C。
13.D
【详解】
A.磁感应强度随时间均匀增大,则穿过线圈的磁通量增大,所以感应电流的磁场方向与原磁场方向相反,应为垂直纸面向外,根据安培定则可以判断感应电流方向为逆时针,故A错误;
B.根据法拉第电磁感应定律可知,线圈中产生的感应电动势为
因为两个线圈在同一个磁场中,磁感应强度的变化率()相同,匝数相同,所以两线圈中的感应电动势之比为它们的面积之比,即
故B错误;
C.根据电阻定律可知两线圈的电阻之比为
所以根据欧姆定律可知,线圈中的电流之比为
故C错误;
D.线圈中的电功率P=EI,所以两线圈中的电功率之比为
故D正确。
故选D。
14.D
【详解】
A.在初始位置时,穿过线圈的磁通量
选项A错误;
B.转过90°角后的磁通量为
线框中磁通量的变化量
选项B错误;
C.穿过线圈的磁通量先向上减小后反向增加,则根据楞次定律可知,线框中感应电流方向始终沿adcba方向,选项C错误;
D.线框中产生的平均感应电动势为
选项D正确。
故选D。
15.D
【详解】
A.抛出后,在x方向上,ab边与cd边所处的磁场强度相同,所以电动势相互抵消。又因为bc边所处的磁场强度大于ad边所处的磁场强度,所以bc边产生的感应电动势Ebc>Ead,再根据右手定则可以判断出电流方向为adcba,A错误;
B.因为相同高度处磁感应强度大小相等,而流过ab边和cd边的电流大小相同,利用左手定则判断出两边受到的安培力大小相等,方向相反,故水平方向上受力平衡,所以水平方向上做匀速运动,B错误;
C.利用左手定则判断出bc边所受安培力向上,ad边所受安培力向下。
令bc边的磁感应强度为B2,ad边磁感应强度为B1,ab边和cd边的长度为L1,bc与ad边的长度为L2,从而求出线框所受合外力
设线框向下运动的距离为x,则
所以加速度
所以当速度增大时,I增大,a减小,所以竖直方向上不是匀加速,C错误;
D.由C选项可知,加速度
所以当I增大到一定值时,a=0,此时竖直方向上将做匀速运动,而水平方向上也是匀速运动,所以速度的矢量和斜向右下方,所以线框最终斜向右下方做匀速运动,D正确。
故选D。
16.
【详解】
线框转动过程半径切割磁感线产生的感应电动势为:,交流电流的有效值是根据电流的热效应得出的,线框转动周期为T,而线框转动一周只有,的时间内有感应电流,则有:,则电流的有效值为:.
点睛:本题主要考查电流有效值的计算,关键是对有效值定义的理解,掌握好有效值的定义就可以计算出来了.
17. 正在增加; ;
线圈置于方向竖直向上的均匀变化的磁场中,根据法拉第电磁感应定律E=n,可知线圈中会产生稳定的电动势.当电键断开时,小球受重力和支持力平衡,当电键闭合时,支持力变为mg,可知,小球受到向上的电场力,根据小球的平衡可求出磁通量的变化率以及磁场的变化.
【详解】
电键闭合时有:qE=mg,
解得:E=
又E=U/d,
感应电动势等于两板的电势差,则U=n
解得:
小球带正电,知上极板带负电,根据楞次定律得知,磁场正在增强
18.mgd/nsq
【详解】
磁场均匀增加时,由楞次定律可判断上极板带正电.所以平行板电容器的板间的电场方向向下,带电粒子受重力和电场力平衡,所以粒子带负电.带电粒子受重力和电场力平衡得:mg=F;,U=nS;磁感应强度的变化率
19.(1)E=0.8V;a端电势高;(2)I=4.0A;(3)F=0.8N。
【详解】
(1) 根据法拉第电磁感应定律,有
E=BLv=0.8V
根据右手定则可判断a端电势高;
(2)由欧姆定律可得
(3) 导体棒ab受到的安培力为
FA=BIL=0.8N
要维持ab向右匀速运动, 根据平衡力可知,作用在ab上的水平外力为
F= FA =0.8N
20.-0.1Wb,-1.0Wb
【详解】
在原图位置,磁感线与线圈平面垂直,磁通量
Φ1=B1×+B2×=0.6×Wb+0.4×Wb=0.5Wb
线圈绕OO′轴逆时针转过37°后,磁通量
Φ2=B1×cos37°+B2×cos37°=0.6××0.8Wb+0.4××0.8Wb=0.4Wb
故线圈逆时针方向转过37°时,穿过线圈的磁通量改变量为
ΔΦ=Φ2-Φ1=0.4Wb-0.5Wb=-0.1Wb
绕圈绕OO′轴逆时针转过180°时,规定穿过原线圈平面的磁通量为正,转过180°后,穿过线圈平面的磁通量为负,转过180°后的磁通量
Φ3=-B1×-B2×=-0.5Wb
初始位置转过180°时,穿过线圈平面的磁通量改变量为
ΔΦ′=Φ3-Φ1=-0.5Wb-0.5Wb=-1.0Wb
21.(1)0.4 V;(2)0.8 A;(3)0.164 N
【详解】
(1)金属杆5 s内的位移
金属杆5 s内的平均速度
故平均感应电动势
(2)金属杆第5 s末的速度
此时回路中的感应电动势
则回路中的电流
(3)金属杆做匀加速直线运动,则
又
故
22.(1);(2);(3)≤ω≤
【详解】
(1)两球碰撞过程满足动量守恒
解得。
(2)杆转动的电动势
电阻R的功率
(3)通过金属杆的转动方向可知P、Q板间的电场方向向上,粘合体受到的电场力方向向上,在半圆轨道最低点的速度恒定,如果金属杆转动角速度过小,粘合体受到的电场力较小,不能达到最高点T,临界状态是粘合体刚好达到T点,此时金属杆的角速度为最小,设此时对应的电场强度为,粘合体达到T点时的速度为,
在T点,由牛顿第二定律得
从S到T,由动能定理得
解得,杆转动的电动势
两板间电场强度
联立解得;
如果金属杆转动角速度过大,粘合体受到的电场力较大,粘合体在S点就可能脱离圆轨道,临界状态是粘合体刚好在S点不脱落轨道,此时金属杆的角速度为最大,设此时对应的电场强度为,在S点,由牛顿第二定律得
杆转动的电动势
两板间电场强度
联立解得;
综上所述,要使两球碰后的粘合体能从半圆轨道的最低点S做圆周运动到最高点T,金属杆转动的角速度的范围为≤ω≤。
答案第1页,共2页
答案第1页,共2页