[学习目标]
掌握有理数加法法则,能准确进行计算;
能数形结合和分类的思想进行有理数的加法运算。
[典型例题]
计算
(1)(+3)+(+4) (2)(-2.6)+(-8.7)
(3)- (4)-(-5)+(-6)
[解答] (1)(+3)+(+4)=+(3+4)=7
(2)(-2.6)+(-8.7)=-(2.6+8.7)=-11.3
(3)- =-(=- Com]
(4)-(-5)+(-6)=5+(-6)=-1
[点拨] 一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号与绝对值.
2. 中亚气候冬冷夏热,西南部的卡拉库姆沙漠在1月份时温度平均为-8℃,到7月份时温度将会上升30℃~35℃,那么卡拉库姆沙漠7月份时气温大约在 ℃~ ℃.
[解答] 22,27
[点拨] 属于有理数的加法.
3. ,b之间的关系如图,
则(1)+b 0,
(2)+(-b) 0,
(3)(-)+b 0, (4)(-)+(-b) 0。]
[解答]⑴>,⑵<,⑶>,⑷<
[点拨] 由图可知为负数,b为正数,且||<|b|,则-为正数,-b为负数,根据有理数加法法则,可以确定+b,+(-b),(-)+b,(-)+(-b)的符号.
[基础训练]
填空题:
1.计算
⑴_____+15=23 ⑵ 18+____=12 ⑶(-9)+_____=-20
答案:8,(-6),(-11)
⑷_____+(-9)=-4 ⑸____+19=0 ⑹(-2)+____=12
答案:5,(-19),14
二.计算题:]
⒉ (-12)+(+11)+(-8)+(+39)
答案:30
⒊ (+)+(-2)+(+1)+(+)]
答案:0
⒋ (-18.56)+(-5.16)+(+1.44)+(+5.16)+(+18.56)
答案:1.44
⒌ [(+7)+(-2.5)]+[(+3)+(6)]
答案:
⒍ (+1998)+(-1999)+(-2000)+(-2001)+(+2002)
答案:2000
⒎ 1+(-2)+3+(-4)+5+(-6)+…+99+(-100)
答案:-50]
⒏(+45.3)+(-9.5)+(+4.7)
答案:40.5
⒐ 1+(-6.5)+3+(-1.75)+(+2)
答案:-0.5
[思维拓展]
⒑某小超市一周中每天的盈亏情况如下(盈余为正):
1283元 -256元 -15元 270元 -70元 365元 980元
一周总的盈亏情况如何?]
答案:盈利2557元.
⒒.求下面两个数的和:一个加数是绝对值等于的负有理数,另一个加数是-的相反数。
答案:
[探究实践]
⒓某矿泉水厂从所生产的瓶装的泉水矿中,抽取了40瓶检查质量.质量达标的用正数表示,质量为达标的用负数表示,结果记录如下表:
与标准质量的偏差(单位:升)
-8
-6
0
+4
+5
+10
瓶数
2
3
13
14
6
2
问:这批样品的平均质量比标准质量多还是少?相差多少克?
答案:多1.8克
[学习目标]
熟练运用有理数加法法则进行计算;
灵活运用加法交换律、结合律简化运算。
[典型例题]
计算:
(+1)+(-3)+(-2)+(+5)
(-
[解答]
原式=[(+1)+(+5)]+[(-3)+(-2)]]
=6+(-5)
=1
原式=[(-
=-11+7]
=-4
原式=
=
=
=
=-4
[点拨] 运用加法的交换律、结合律进行计算,使运算大大简便。常用方法有:
(1)正数和负数分别结合再相加,简称“同号结合法”
(2)某些加数结合凑为整数再相加,简称为“凑整结合法”
(3)互为相反数的数结合再相加,简称为“相反数结合法”
(4)遇到分数,同分母分数结合相加,简称为“同分母结合法”
2.10袋小麦称重记录如下,从每袋90千克为准,超出千克数记为正数,不足千克数记为负数,总记是超过多少千克?10袋小麦的重量是多少?
+7
+5
-4
+6
+4
+3
-3
-2
+8]
+1
[解答] +7+5+(-4)+6+6+3+(-3)+(-2)+8+1
=[(-4)+4]+[5+(-3)+(-2)]+(7+6+3+8+1)
=0+0+25
=25
90×10+25=925(千克)
答:总重量超过25千克,总重量为925千克.
[点拨] 属于有理数的加法,应将10个有理数相加,和为正数,说明超过,和为负数,说明为足。
[基础训练]
一、计算
1.[(-)+(-3.5)]+[(+3.5)+(+)]
答案:-
2.[(-)+(-)]+[(+)+(-2.25)]
答案:-12.5[
3.[+(-9.5)+(-)]+[(-)+(+)]
答案:2
4.(+0.65)+(-1.9)+(-1.1)+(-)
答案:-2.65
5.(+1.125)+(-)+(-)+(-0.6)
答案:-3
6.(-)+(+15.5)+(-)+(-)
答案:-10
7.(-)+(-)++(-)
答案:-
8.(-0.2)+(+)+2.7+(-)
答案:0
[思维拓展]
9.如果且求的值.
答案: 1或5
[探究实践]
10.某检修小组乘一辆汽车沿公路检修线路,约定向东走为正,向西走为负。某天从A地出发到收工时,行走记录(长度单位:千米)为:+15,-2,+5,-1,+10,-3。
⑴问收工时,检修小组在A处的哪一边,距A地多远?
⑵若汽车每千米的耗油为升,求从出发到收工共耗油多少升?
答案:(1)在A东边,距A24千米.
(2)35升