(共16张PPT)
7.1.2 全概率公式
1. 条件概率:
在事件A发生的条件下,事件B发生的概率称为条件概率,即
由条件概率公式可得
复习导入:
2. 概率的乘法公式:
在上节计算按对银行储蓄卡密码的概率时,我们首先把一个复杂事件表示为一些简单事件运算的结果,然后利用概率的加法公式和乘法公式求其概率. 下面, 再看一个求复杂事件概率的问题.
3. 概率的加法公式:
如事件B,C互斥,则有
思考 从有a个红球和b个蓝球的袋子中,每次随机摸出1个球,摸出的球不再放回.显然,第1次摸到红球的概率为 ,那么第2次摸到红球的概率是多大 如何计算这个概率呢
因为抽签具有公平性,所以第2次摸到红球的概率也应该是 . 但是这个结果并不显然,因为第2次摸球的结果受第1次摸球结果的影响. 下面我们给出严格的推导.
用Ri表示事件“第i次摸到红球”,Bi表示事件“第i次摸到蓝球”,i=1, 2. 如图示,那么事件R2可按第1次可能的摸球结果(红球或蓝球)表示为两个互斥事件的并,即R2=R1R2∪B1R2. 利用概率的加法公式和乘法公式,得
上述过程采用的方法是: 按照某种标准,将一个复杂事件表示为两个互斥事件的并,再由概率的加法公式和乘法公式求得这个复杂事件的概率.
全概率公式:
我们称上面的公式为全概率公式. 全概率公式是概率论中最基本的公式之一.
例4 某学校有 A,B两家餐厅,王同学第1天午餐时随机地选择一家餐厅用餐. 如果第1天去A餐厅,那么第2天去A餐厅的概率为0.6;如果第1天去B餐厅,那么第2天去A餐厅的概率为0.8. 计算王同学第2天去A餐厅用餐的概率.
设A1=“第1天去A餐厅”, B1=“第1天取B餐厅”, A2=“第2天去A餐厅”, 则
解:
解:
课本52页
1. 现有12道四选一 的单选题,学生张君对其中9道题有思路,3道题完全没有思路. 有思路的题做对的概率为0.9,没有思路的题只好任意猜一个答案,猜对答案的概率为0.25. 张君从这12道题中随机选择1题,求他做对该题的概率.
设A=“选到有思路的题”, B=“选到的题做对”, 则由全概率公式, 可得
例5 有 3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起,已知第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.
(1) 任取一个零件,计算它是次品的概率;
(2) 如果取到的零件是次品,计算它是第i(i=1,2,3)台车床加工的概率.
设B=“任取一个零件为次品”, Ai=“零件为第i台车床加工” (i=1, 2, 3), 则
解:
例5 有 3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起,已知第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.
(1) 任取一个零件,计算它是次品的概率;
(2) 如果取到的零件是次品,计算它是第i(i=1,2,3)台车床加工的概率.
如果取到的零件是次品,计算它是第i(i=1, 2, 3)台车床加工的概率,就是计算在B发生的条件下,事件Ai发生的概率,即
解:
思考 例5中P(Ai),P(Ai|B)的实际意义是什么
P(Ai)是试验之前就已知的概率,它是第i台车床加工的零件所占的比例,称为先验概率,当已知抽到的零件是次品(B发生),P(Ai|B)是这件次品来自第i台车床加工的可能性大小,通常称为后验概率. 如果对加工的次品,要求操作员承担相应的责任,那么
就分别是第1,2,3台车床操作员应承担的份额.
将例5中的问题(2) 一般化,可以得到贝叶斯公式.(选学内容,不作考试要求)
贝叶斯公式:
解:
课本52页
2. 两批同种规格的产品,第一批占 40%,次品率为5%;第二批占60%,次品率为4%. 将两批产品混合,从混合产品中任取1件.
(1) 求这件产品是合格品的概率;
(2) 已知取到的是合格品,求它取自第一批产品的概率.
设A=“取到合格品”, Bi=“取到的产品来自第i批”(i=1, 2), 则
例6 在数字通信中,信号是由数字0和1组成的序列. 由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0. 已知发送信号0时,接收为0和1的概率分别为0.9和0.1;发送信号1时,接收为1和0的概率分别为0.95和0.05. 假设发送信号0和1是等可能的.
(1) 分别求接收的信号为0和1的概率;
(2) 已知接收的信号为0,求发送的信号是1的概率.
解:
例6 在数字通信中,信号是由数字0和1组成的序列. 由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0. 已知发送信号0时,接收为0和1的概率分别为0.9和0.1;发送信号1时,接收为1和0的概率分别为0.95和0.05. 假设发送信号0和1是等可能的.
(1) 分别求接收的信号为0和1的概率;
(2) 已知接收的信号为0,求发送的信号是1的概率.
解:
巩固训练:小结:
1. 全概率公式:
2. 贝叶斯公式: