2021-2022学年高二下学期数学人教A版(2019)选择性必修第三册7.3.1离散型随机变量的均值课件(17张ppt)

文档属性

名称 2021-2022学年高二下学期数学人教A版(2019)选择性必修第三册7.3.1离散型随机变量的均值课件(17张ppt)
格式 pptx
文件大小 524.0KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-04-11 18:21:47

图片预览

文档简介

(共17张PPT)
7.3.1 离散型随机变量的均值
7.3 离散型随机变量的数字特征
1. 复习
一般地,设离散型随机变量X的可能取值为x1,x2, ,xn,我们称X取每一个值xi的概率
为X的概率分布列(list of probability distribution),简称分布列.
(1) 离散型随机变量的分布列
根据概率的性质,离散型随机变量分布列具有下述两个性质:
(2) 离散型随机变量的分布列的性质
离散型随机变量的分布列全面地刻画了这个随机变量的取值规律. 但在解决有些实际问题时,直接使用分布列并不方便,例如,要比较不同班级某次考试成绩,通常会比较平均成绩;要比较两名射箭运动员的射箭水平,一般会比较他们射箭的成绩(平均环数或总环数)以及稳定性. 因此,类似于研究一组数据的均值和方差,我们也可以研究离散型随机变量的均值和方差,它们统称为随机变量的数字特征.
问题1 甲、 乙两名射箭运动员射中目标箭靶的环数的分布列如下表所示.
环数X 7 8 9 10
甲射中的概率 0.1 0.2 0.3 0.4
乙射中的概率 0.15 0.25 0.4 0.2
如何比较他们射箭水平的高低呢
类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.
环数X 7 8 9 10
甲射中的概率 0.1 0.2 0.3 0.4
乙射中的概率 0.15 0.25 0.4 0.2
假设甲射箭n次,射中7环、8环、9环和10环的频率分别为
甲n次射箭射中的平均环数为
当n足够大时,频率稳定于概率,所以 稳定于
即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.
同理,乙射中环数的平均值为
从平均值的角度比较,甲的射箭水平比乙高.
2. 随机变量的均值
一般地,若离散型随机变量X的分布列如下表所示,
X x1 x2 xn
P p1 p2 pn
则称
为随机变量X的均值或数学期望, 数学期望简称期望. 均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.
例1 在篮球比赛中,罚球命中1次得1分,不中得0分. 如果某运动员罚球命中的概率为0.8,那么他罚球1次的得分X的均值是多少
由题意得,X的分布列为
解:
即该运动员罚球1次的得分X的均值是0.8.
一般地,如果随机变量X服从两点分布,那么
例2 抛掷一枚质地均匀的骰子, 设出现的点数为X,求X的均值.
由题意得,X的分布列为
解:
即点数X的均值是3.5.
观察 掷一枚质地均匀的骰子,掷出的点数X的均值为3.5. 随机模拟这个试验,重复60次和重复300次各做6次,观测出现的点数并计算平均数. 根据观测值的平均数(样本均值)绘制统计图,分别如图 (1)和(2)所示. 观察图形,在两组试验中,随机变量的均值与样本均值有何联系与区别
观察图形可以发现: 在这12组掷骰子试验中,样本均值各不相同,但它们都在掷出点数X的均值3.5附近波动,且重复掷300次的样本均值波动幅度明显小于重复60次的.
事实上,随机变量的均值是一个确定的数,而样本均值具有随机性,它围绕随机变量的均值波动. 随着重复试验次数的增加,样本均值的波动幅度一般会越来越小,因此,我们常用随机变量的观测值的均值去估计随机变量的均值.
探究 如果X是一个离散型随机变量,X加一个常数或乘一个常数后,其均值会怎样变化 即E(X+b)和E(aX)(其中a, b为常数)分别与E(X)有怎样的关系
设X的分布列为
根据随机变量均值的定义,
类似地,可以证明
一般地,下面的结论成立:
解:
课本66页
1. 已知随机变量X的分布列为
X 1 2 3 4 5
P 0.1 0.3 0.4 0.1 0.1
(1) 求E(X);(2) 求E(3X+2).
解:
课本67页
2. 抛掷一枚硬币,规定正面向上得1分,反面向上得-1分,求得分X的均值.
由题意可得,X的可能取值为0,1000,3000,6000,则X的分布列为
解:
例3 猜歌名游戏是根据歌曲的主旋律制成的铃声来猜歌名.某嘉宾参加猜歌名节目,猜对每首歌曲的歌名相互独立,猜对三首歌曲A,B,C歌名的概率及猜对时获得相应的公益基金如表7. 3-3所示.
规则如下: 按照A,B,C的顺序猜,只有猜对当前歌曲的歌名才有资格猜下一首. 求嘉宾获得的公益基金总额X的分布列及均值.
歌曲 A B C
猜对的概率 0.8 0.6 0.4
获得的公益基金额/元 1000 2000 3000
X的均值为
例4 根据天气预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0.01. 该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元. 为保护设备,有以下3种方案:
方案1 运走设备,搬运费为3800元;
方案2 建保护围墙,建设费为2000元,但围墙只能防小洪水;
方案3 不采取措施.
工地的领导该如何决策呢
解:
设方案1、方案2、方案3的总损失分别为X1,X2,X3 .
采用方案1,有
采用方案2,有
采用方案3,有
∴因此, 从期望损失最小的角度, 应采取方案2.
值得注意的是,上述结论是通过比较“期望总损失”而得出的. 一般地,我们可以这样来理解“期望总损失”:
如果问题中的天气状况多次发生,那么采用方案2将会使总损失减到最小. 不过,因为洪水是否发生以及洪水发生的大小都是随机的,所以对于个别的一次决策,采用方案2也不一定是最好的.
解:
课本67页
3. 甲、乙两台机床生产同一种零件,它们生产的产量相同,在1 h内生产出的次品数分别为X1,X2,其分布列分别为
甲机床次品数的分布列
乙机床次品数的分布列
X1 0 1 2 3
P 0.4 0.3 0.2 0.1
X2 0 1 2
P 0.3 0.5 0.2
哪台机床更好 请解释你所得出结论的实际含义.
由此可知,1h内甲机床平均生产1个次品,乙机床平均生产0.9个次品,所以乙机床相对更好.
1. 离散型随机变量的均值:
一般地,若离散型随机变量X的分布列如下表所示,
X x1 x2 xn
P p1 p2 pn
则称
为随机变量X的均值或数学期望, 数学期望简称期望.
2. 均值的性质:
3. 随机变量X服从两点分布,则有
小结: