九年级上册数学第二十六章二次函数单元测试三(附答案)

文档属性

名称 九年级上册数学第二十六章二次函数单元测试三(附答案)
格式 zip
文件大小 334.4KB
资源类型 教案
版本资源 沪教版
科目 数学
更新时间 2013-02-17 15:47:33

图片预览

文档简介

九年级上册数学第二十六章二次函数单元测试三(附答案)
学校:___________姓名:___________班级:___________考号:___________
题号





总分
得分
一、选择题
1.若二次函数.当≤l时,随的增大而减小,则的取值范围是( )
A.=l B.>l C.≥l D.≤l
2.抛物线的顶点坐标是( )。
A. B. C. D.
3.如图,在中,∠C=90°,AB=5cm,BC=3cm,动点P从点A 出发,以每秒1cm的速度,沿ABC的方向运动,到达点C时停止.设,运动时间为t秒,则能反映y与t之间函数关系的大致图象是 ( )
4.如图,关于抛物线,下列说法错误的是 ( )
A.顶点坐标为(1,)
B.对称轴是直线x=l
C.开口方向向上
D.当x>1时,Y随X的增大而减小
5. 已知函数①,②,③,④,⑤,其中二次函数的个数为( ).
A.1 B.2 C.3 D.4
6.将二次函数的图象先向右平移2个单位,再向下平移个单位,得到的函数图象的解析式为( ).
A. B.
C. D.
7.将二次函数的图象先向右平移2个单位,再向下平移个单位,得到的函数图象的解析式为( ).
A. B.
C. D.
8.抛物线是由抛物线平移得到的,下列对于
抛物线的平移过程叙述正确的是 ( )。
A.先向右平移2个单位,再向上平移1个单位
B.先向右平移2个单位,再向下平移1个单位
C.先向左平移2个单位,再向上平移1个单位
D.先向左平移2个单位,再向下平移1个单位
9.抛物线与相交,有一个交点在x轴上,则k的值为(  ).
A.0 B. 2 C.-1 D.
10.抛物线经过平移得到抛物线,平移的方法是( )
A.向左平移1个单位,再向下平移2个单位
B.向右平移1个单位,再向下平移2个单位
C.向左平移1个单位,再向上平移2个单位
D.向右平移1个单位,再向上平移2个单位
二、填空题
11.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题: ①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是______.(只要求填写正确命题的序号)
12.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是 。

13. 抛物线上部分点的横坐标x,纵坐标y的对应值如表所示,给出下列说法:
抛物线与y轴的交点为(0,6); ② 抛物线的对称轴是在y轴右侧;
③ 在对称轴左侧,y随x增大而减小;④ 抛物线一定过点(3, 0).
上述说法正确的是 (填序号).
14.抛物线的最低点坐标是 .
15. 二次函数6的最小值为_________________.
16.二次函数(不为零),当取时,函数值相等,则 .
三、计算题
17. 已知抛物线经过点(1,-4)和(-1,2).求抛物线解析式.
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
18.求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式.
19.求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.
20.当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
四、解答题
21.如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内。
求点E的坐标;
点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,
连结PN。设PE=x.△PMN的面积为S。
求S关于x的函数关系式;
△PMN的面积是否存在最大值,若不存在,请说明理由。若存在,求出面积的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC)。现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2)。设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯形ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式。

22.在平面直角坐标系中,现将一块等腰直角三角形ABC放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示;抛物线经过点B。
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使ΔACP仍然是以AC为直角边的等腰直角三角形?若存在,求所以点P的坐标;若不存在,请说明理由。
23. (1)任选以下三个条件中的一个,求二次函数的解析式;
①y随x变化的部分数值规律如下表:
x
-1
0
1
2
3
y
0
3
4
3
0

②有序数对、、满足;
③已知函数的图象的一部分(如图).

(2)直接写出二次函数的三个性质.
24.某商场购进一批L型服装(数量足够多),进价为40元/件,以60元/件销售,每天销售20件。根据市场调研,若每件每降1元,则每天销售数量比原来多3件。现商场决定对L型服装开展降价促销活动,每件降价x元(x为正整数)。在促销期间,商场要想每天获得最大销售利润,每件降价多少元?每天最大销售毛利润为多少?(注:每件服装销售毛利润指每件服装的销售价与进货价的差)
25.如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系,求:(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;(2)有一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?
26.如图所示:在平面直角坐标系中,圆M经过原点O且与X轴Y轴分别相交于A(-6,0),B(0,-8)两点
(1)请写出直线 AB的解析式
(2)若有一抛物线的对称轴平行于Y轴且经过点M,顶点C在圆M上,开口向下且经过点B。求此抛物线的函数表达式
(3)设(2)中的抛物线交X轴于D、E两点,在抛物线上是否存在点P,使得 。若存在,请直接写出所有点P的坐标,若不存在,请说明理由
27.在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.
⑴求经过点D、B、E的抛物线的解析式;
⑵将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交⑴中的抛
物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由.
⑶过⑵中的点F的直线交射线CB于点P,交⑴中的抛物线在第一象限的部分于点Q,且使△PFE为等腰三角形,求Q点的坐标.
参考答案
1.C
2.C
3.A
4.D
5.B
6.D
7.D
8. A
9. B
10.D
11..①③
12.-1<x<3
13.
14.;
15.2
16.0
17.解:设抛物线解析式为:----------------1分
由题意知: --------------------------------------2分
解得: ----------------------------------------------4分
∴抛物线解析式为
18.
19.
20.

21.(1)E(1,)
(2)①当0≤X≤1时,S=
当1<X≤4时,S=-
②若0≤X≤1时,S=
若1<X≤4时,S=-
∵-<0 ∴S随X的增大而减小
∴S不存在最大值
∴综上所述,当0≤X≤1时,S存在最大值,最大值为
(3)当0≤t≤2时,直角梯形E′D′G′H′落在等腰梯形内部,这时重叠部分的面积即为直角梯形面积,y=×(2+3)× =
当2<X≤4时,y=×(4-t+5-t)× =- t+
当4<X≤5时,y=(5-t)×× (5-t)= (5-t)2
22.解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90° ,∠ACO+∠OAC =90°;
∴∠BCD=∠CAO; 又∵∠BDC=∠COA=90°;CB=AC,
∴ △BDC≌△CAO=90°,∴BD=OC=1,CD=OA=2;∴点B的坐标为(3,1)
(2)抛物线经过点B(3,1),则得 解得,所以抛物线的解析式为
(3)假设存在点P,似的△ACP是直角三角形:
①若以AC为直角边,点C为直角顶点;则延长BC至点P1 使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,如图1。
∵CP1=BC,∠MCP1=∠BCD, ∠P1MC=∠BDC=90°,∴△MCP1≌△BCD
∴ CM=CD=2,P1M=BD=1,可求得点P1(-1,-1);经检验点P1(-1,-1)在抛物线为上;
②若以AC为直角边, 点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,如图2。
同理可得△AP2N≌△CAO;∴NP2=OA=2,AN=OC=1,可求得点P2(-2,1),;经检验点P2(-2,1)也在抛物线上;
③若以AC为直角边, 点A为直角顶点;则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,如图3。
同理可得△AP3H≌△CAO;∴HP3=OA=2,AH=OC=1,可求得点P3(2,3),;经检验点P3(2,3)不抛物线上;
故符合条件的点有P1(-1,-1),P2(-2,1)两个。
23.(1)见解析(2)1、对称轴为,2、开口向下3、与轴有2个交点4、交 轴正半轴
24.每件降价7元,每天最大销售毛利润为533元
25.(1)设所求函数的解析式为.
由题意,得函数图象经过点B(3,-5),
∴-5=9a.
∴.
∴所求的二次函数的解析式为.
x的取值范围是.
(2)当车宽米时,此时CN为米,对应,
EN长为,车高米,∵,
∴农用货车能够通过此隧道.
26.(1)(2)y=(3)
27.解:(1)∵BE⊥DB交x轴于点E,OABC是正方形,∴∠DBC=EBA。
在△BCD与△BAE中,∵∠BCD=∠BAE=90°, BC=BA ,∠DBC=∠EBA ,
∴△BCD≌△BAE(ASA)。∴AE=CD。
∵OABC是正方形,OA=4,D是OC的中点,
∴A(4,0),B(4,4),C(0,4),D(0,2),∴E(6,0).
设过点D(0,2),B(4,4),E(6,0)的抛物线解析式为y=ax2+bx+c,则有:
,解得 。
∴经过点D、B、E的抛物线的解析式为:。
(2)结论OF=DG能成立.理由如下:
由题意,当∠DBE绕点B旋转一定的角度后,同理可证得△BCG≌△BAF,∴AF=CG。
∵xM=,∴。∴M()。
设直线MB的解析式为yMB=kx+b,
∵M(),B(4,4),
∴,解得。
∴yMB=x+6。∴G(0,6)。
∴CG=2,DG=4。∴AF=CG=2,OF=OA﹣AF=2,F(2,0)。
∵OF=2,DG=4,∴结论OF=DG成立。
(3)如图,△PFE为等腰三角形,可能有三种情况,分类讨论如下:
①若PF=FE。
∵FE=4,BC与OA平行线之间距离为4,
∴此时P点位于射线CB上。
∵F(2,0),∴P(2,4)。
此时直线FP⊥x轴。来]∴xQ=2。
∴,
∴Q1(2,)。
②若PF=PE。
如图所示,∵AF=AE=2,BA⊥FE,∴△BEF为等腰三角形。
∴此时点P、Q与点B重合。∴Q2(4,4)。
③若PE=EF。
∵FE=4,BC与OA平行线之间距离为4,∴此时P点位于射线CB上。
∵E(6,0),∴P(6,4)。
设直线yPF的解析式为yPF=kx+b,∵F(2,0),P(6,4),
∴,解得。∴yPF=x﹣2。
∵Q点既在直线PF上,也在抛物线上,
∴,化简得5x2﹣14x﹣48=0,
解得x1= ,x2=﹣2(不合题意,舍去)。∴xQ=2。
∴yQ=xQ﹣2=。∴Q3()。
综上所述,Q点的坐标为Q1(2,)或Q2(4,4)或Q3()。