冀教版数学七年级下册 7.1 命题 学案(无答案)

文档属性

名称 冀教版数学七年级下册 7.1 命题 学案(无答案)
格式 doc
文件大小 18.0KB
资源类型 教案
版本资源 冀教版
科目 数学
更新时间 2022-04-13 14:24:59

图片预览

文档简介

课题:7.1命题
学习目标:1、掌握命题、定理的概念,并能分清命题的组成部分.
2、经历判断命题真假的过程,对命题的真假有一个初步的了解。
3、初步培养不同几何语言相互转化的能力。
学习重点:命题的概念和区分命题的题设与结论
学习难点:区分命题的题设和结论
学习过程:
一、学前准备
1、预习疑难: 。
2、填空:①平行线的3个判定方法的共同点是 。
②平行线的判定和性质的区别是 。
二、探索与思考
(一)命题:
1、阅读思考:①如果两条直线都与第三条直线平行,那么这条直线也互相平行;
②等式两边都加同一个数,结果仍是等式;
③对顶角相等;
④如果两条直线不平行,那么同位角不相等.
这些句子都是对某一件事情作出“是”或“不是”的判断
2、定义: 的语句,叫做命题
3、练习:下列语句,哪些是命题 哪些不是
(1)过直线AB外一点P,作AB的平行线.
(2)过直线AB外一点P,可以作一条直线与AB平行吗
(3)经过直线AB外一点P, 可以作一条直线与AB平行.
请你再举出一些例子。
(二)命题的构成:
1、许多命题都由 和 两部分组成.
是已知事项, 是由已知事项推出的事项.
2、命题常写成"如果……那么……"的形式,这时,"如果"后接的部分是 ,
"那么"后接的的部分是 .
(三)命题的分类 真命题: 。
(定理: 的真命题。)
假命题: 。
三、应用:
1、指出下列命题的题设和结论:
(1)如果两个数互为相反数,这两个数的商为-1;
(2)两直线平行,同旁内角互补;
(3)同旁内角互补,两直线平行;
(4)等式两边乘同一个数,结果仍是等式;
(5)绝对值相等的两个数相等.
(6)如果AB⊥CD,垂足是O,那么∠AOC=90°
2、把下列命题改写成"如果……那么……"的形式:
(1)互补的两个角不可能都是锐角: 。
(2)垂直于同一条直线的两条直线平行: 。
(3)对顶角相等: 。
3、判断下列命题是否正确:
(1)同位角相等
(2)如果两个角是邻补角,这两个角互补;
(3)如果两个角互补,这两个角是邻补角.
四、学习体会:
1、本节课你有哪些收获?你还有哪些疑惑?
2、预习时的疑难解决了吗?
五、自我检测:
1、判断下列语句是不是命题
(1)延长线段AB( )
(2)两条直线相交,只有一交点( )
(3)画线段AB的中点( )
(4)若|x|=2,则x=2( )
(5)角平分线是一条射线( )
2、选择题
(1)下列语句不是命题的是( )
A、两点之间,线段最短 B、不平行的两条直线有一个交点
C、x与y的和等于0吗? D、对顶角不相等。
(2)下列命题中真命题是( )
A、两个锐角之和为钝角 B、两个锐角之和为锐角
C、钝角大于它的补角 D、锐角小于它的余角
(3)命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。其中假命题有( )
A、1个 B、2个 C、3个 D、4个
3、分别指出下列各命题的题设和结论。
(1)如果a∥b,b∥c,那么a∥c
(2)同旁内角互补,两直线平行。
4、分别把下列命题写成“如果……,那么……”的形式。
(1)两点确定一条直线;
(2)等角的补角相等;
5、已知:如图,AC⊥BC,垂足为C,∠BCD是∠B的余角。
求证:∠ACD=∠B。
证明:∵AC⊥BC(已知)
∴∠ACB=90°( )
∴∠BCD是∠ACD的余角
∵∠BCD是∠B的余角(已知)
∴∠ACD=∠B( )
B
D
A
C