中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
专题05 频率与概率
1.频率的稳定性
一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐稳定于事件A发生的概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率fn(A)估计概率P(A).
2.频率与概率的区别与联系
名称 区别 联系
频率 本身是随机的,在试验之前无法确定,大多会随着试验次数的改变而改变.做同样次数的重复试验,得到的频率值也可能会不同 (1)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率 (2)在实际问题中,事件的概率通常情况下是未知的,常用频率估计概率
概率 是一个[0,1]中的确定值,不随试验结果的改变而改变
题型一 由频率估计随机事件的概率
1.有一个容量为66的样本,数据的分组及各组的频数如下:
[11.5,15.5) 2 ;[15.5,19.5) 4 ;[19.5,23.5) 9;
[23.5,27.5) 18 ;[27.5,31.5) 11 ;[31.5,35.5) 12;
[35.5,39.5) 7 ;[39.5,43.5] 3.
根据样本的频率分布,估计数据落在[31.5,43.5]内的概率约是( )
A. B. C. D.
解析:选B.由已知,样本容量为66,而落在[31.5,43.5]内的样本数为12+7+3=22,
故所求概率约为=.
2.抛掷一枚硬币100次,正面向上的次数为48次,下列说法正确的是( )
A.正面向上的概率为0.48
B.反面向上的概率是0.48
C.正面向上的频率为0.48
D.反面向上的频率是0.48
解析:选C.因为抛掷一枚硬币100次,即为100次试验,正面向上这一事件发生了48次,
根据频率的定义可知,正面向上的频率为0.48.
3.容量为20的样本数据,分组后的频数如下表:
分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70]
频数 2 3 4 5 4 2
则样本数据落在区间[10,40)上的频率为( )
A.0.35 B.0.45
C.0.55 D.0.65
解析:选B.在区间[10,40)的频数为2+3+4=9,所以频率为=0.45.
4.给出下列三个说法,其中正确说法的个数是( )
①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;
②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是;
③随机事件发生的频率就是这个随机事件发生的概率.
A.0 B.1
C.2 D.3
解析:选A.①概率指的是可能性,错误;②频率为,而不是概率,故错误;
③频率不是概率,错误.
5.某公司在过去几年内使用某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如表所示:
分组 [500, 900) [900, 1 100) [1 100, 1 300) [1 300, 1 500) [1 500, 1 700) [1 700, 1 900) [1 900, +∞)
频数 48 121 208 223 193 165 42
频率
①将各组的频率填入表中;
②根据上述统计结果,估计灯管使用寿命不足1 500小时的概率.
解析:①频率依次是0.048,0.121,0.208,0.223,0.193,0.165,0.042.
②样本中寿命不足1 500小时的频数是48+121+208+223=600,
所以样本中寿命不足1 500小时的频率是=0.6.
即灯管使用寿命不足1 500小时的概率约为0.6.
6.某射击运动员进行双向飞碟射击训练,七次训练的成绩记录如下:
射击次数n 100 120 150 100 150 160 150
击中飞碟数nA 81 95 120 81 119 127 121
(1)求各次击中飞碟的频率;(保留三位小数)
(2)该射击运动员击中飞碟的概率约为多少?
解析:(1)由公式fn(A)=可得,
击中飞碟的频率依次为0.810,0.792,0.800,0.810,0.793,0.794,0.807.
(2)由(1)可知该射击运动员在同一条件下击中飞碟的频率都在0.800附近摆动,
所以该运动员击中飞碟的概率约为0.800.
题型二 概率的含义
1.某地气象局预报说,明天本地降雨的概率为80%,则下列解释正确的是( )
A.明天本地有80%的区域降雨,20%的区域不降雨
B.明天本地有80%的时间降雨,20%的时间不降雨
C.明天本地降雨的机会是80%
D.以上说法均不正确
解析:选项A,B显然不正确,因为80%是说降雨的概率,而不是说80%的区域降雨,
更不是说有80%的时间降雨,是指降雨的机会是80%,故选C.
2.有以下说法:
①昨天没有下雨,则说明“昨天气象局的天气预报降水概率为95%”是错误的;
②“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖;
③做10次抛硬币的试验,结果3次正面朝上,因此正面朝上的概率为;
④某厂产品的次品率为2%,但该厂的50件产品中可能有2件次品.
其中错误说法的序号是________.
解析:①中降水概率为95%,仍有不降水的可能,故①错误;
②中“彩票中奖的概率是1%”表示在设计彩票时,有1%的机会中奖,但不一定买100张彩票一定有1张会中奖,故②错误;
③中正面朝上的频率为,概率仍为,故③错误;
④中次品率为2%,但50件产品中可能没有次品,也可能有1件或2或3件…次品,故④正确.
答案:①②③
3.在进行n次重复试验中,事件A发生的频率为,当n很大时,事件A发生的概率P(A)与的关系是( )
A.P(A)≈ B.P(A)<
C.P(A)> D.P(A)=
解析:选A.对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),
因此可以用频率fn(A)来估计概率P(A).即P(A)≈.
4.每道选择题有四个选项,其中只有一个选项是正确的.某次数学考试共有12道选择题,有位同学说:“每个选项正确的概率是,我每道题都选择第一个选项,则一定有3道题选择结果正确.”该同学的说法( )
A.正确 B.错误
C.无法解释 D.以上均不正确
解析:选B.解每一道选择题都可看成一次试验,每次试验的结果都是随机的,经过大量的试验其结果呈现出一定的规律,即随机选取一个选项选择正确的概率是.12道选择题做对3道题的可能性比较大,
但并不能保证一定做对3道题,也有可能都选错,因此该同学的说法错误.
5.玲玲和倩倩下跳棋,为了确定谁先走第一步,玲玲决定拿一个飞镖射向如图所示的靶中.若射中区域所标的数字大于3,则玲玲先走第一步,否则倩倩先走第一步.这个游戏规则________(填“公平”或“不公平”).
解析:由已知得,所标的数字大于3的区域有5个,而小于或等于3的区域只有3个,
所以玲玲先走的概率是,倩倩先走的概率是,所以不公平.
6.商场在一周内共卖出某种品牌的皮鞋300双,商场经理为考察其中各种尺码皮鞋的销售情况,以这周内某天售出的40双皮鞋的尺码为一个样本,分为5组,已知第3组的频率为0.25,第1,2,4组的频数分别为6,7,9,若第5组表示的是尺码为40~42的皮鞋,则售出的这300双皮鞋中尺码为40~42的皮鞋约为________双.
解析:因为第1,2,4组的频数分别为6,7,9,所以第1,2,4组的频率分别为=0.15,=0.175,=0.225.因为第3组的频率为0.25,所以第5组的频率是1-0.25-0.15-0.175-0.225=0.2,
所以售出的这300双皮鞋中尺码为40~42的皮鞋约为0.2×300=60(双).
7.某校高二年级(1)(2)班准备联合举办晚会,组织者欲使晚会气氛热烈、有趣,策划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负责表演一个节目.(1)班的文娱委员利用分别标有数字1,2,3,4,5,6,7的两个转盘(如图所示),设计了一种游戏方案:两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时(1)班代表获胜,否则(2)班代表获胜.该方案对双方是否公平?为什么?
解析:该方案是公平的,理由如下:各种情况如表所示:
和 4 5 6 7
1 5 6 7 8
2 6 7 8 9
3 7 8 9 10
由表可知该游戏可能出现的情况共有12种,其中两数字之和为偶数的有6种,为奇数的也有6种,
所以(1)班代表获胜的概率P1==,(2)班代表获胜的概率P2==,即P1=P2,机会是均等的,所以该方案对双方是公平的.
8.下面有三种游戏规则:袋子中分别装有大小相同的球,从袋中取球.
游戏1 游戏2 游戏3
3个黑球和1个白球 1个黑球和1个白球 2个黑球和2个白球
取1个球,再取1个球 取1个球 取1个球,再取1个球
取出的两个球同色→甲胜 取出的球是黑球→甲胜 取出的两个球同色→甲胜
取出的两个球不同色→乙胜 取出的球是白球→乙胜 取出的两个球不同色→乙胜
问其中不公平的游戏是( )
A.游戏1 B.游戏1和游戏3
C.游戏2 D.游戏3
解析:选D.游戏1中,取2个球的所有可能情况为(黑1,黑2),(黑1,黑3),(黑2,黑3),
(黑1,白),(黑2,白),(黑3,白).所以甲胜的可能性为0.5,故游戏是公平的;游戏2中,
显然甲胜的可能性为0.5,游戏是公平的;游戏3中,取2个球的所有可能情况为(黑1,黑2),
(黑1,白1),(黑2,白1),(黑1,白2),(黑2,白2),(白1,白2).
所以甲胜的可能性为,游戏是不公平的.
9.有人对甲、乙两名网球运动员训练中一发成功次数做了统计,结果如下表:
一发次数n 10 20 50 100 200 500
甲一发成功次数 9 17 44 92 179 450
一发成功的频率
一发次数n 10 20 50 100 200 500
乙一发成功次数 8 19 44 93 177 453
一发成功的频率
请根据以上表格中的数据回答以下问题:
(1)分别计算出两位运动员一发成功的频率,完成表格;
(2)根据(1)中计算的结果估计两位运动员一发成功的概率.
解析:(1)
一发次数n 10 20 50 100 200 500
甲一发成 功次数 9 17 44 92 179 450
一发成功 的频率 0.9 0.85 0.88 0.92 0.895 0.9
一发次数n 10 20 50 100 200 500
乙一发成 功次数 8 19 44 93 177 453
一发成功 的频率 0.8 0.95 0.88 0.93 0.885 0.906
(2)由第一问中的数据可知,随着一发次数的增多,
两位运动员一发成功的频率都越来越集中在0.9附近,所以估计两人一发成功的概率均为0.9.
10.某商区停车场临时停车按时段收费,收费标准为每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算),现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.
(1)若甲停车1小时以上且不超过2小时的概率为,停车付费多于14元的概率为,求甲停车付费恰为6元的概率;
(2)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.
解析:(1)设“甲临时停车付费恰为6元”为事件A,则P(A)=1-=.
所以甲临时停车付费恰为6元的概率是.
(2)设甲停车付费a元,乙停车付费b元,其中a,b=6,14,22,30.
则甲、乙二人的停车费用共16种等可能的结果:
(6,6),(6,14),(6,22),(6,30),(14,6),(14,14),(14,22),(14,30),(22,6),
(22,14),(22,22),(22,30),(30,6),(30,14),(30,22),(30,30),
其中(6,30),(14,22),(22,14),(30,6)4种情形符合题意.
所以“甲、乙二人停车付费之和为36元”的概率为P==.
11.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中的球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6 000次.
(1)估计从袋中任意摸出一个球,恰好是红球的概率;
(2)请你估计袋中红球的个数.
解析:(1)因为20×400=8 000,
所以摸到红球的频率为=0.75,
因为试验次数很大,大量试验时,频率接近于理论概率,
所以估计从袋中任意摸出一个球,恰好是红球的概率是0.75.
(2)设袋中红球有x个,根据题意得:
=0.75,解得x=15,经检验x=15是原方程的解.所以估计袋中红球有15个.
题型三 随机模拟法估计概率
1.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
93 28 12 45 85 69 68 34 31 25
73 93 02 75 56 48 87 30 11 35
据此估计,该运动员两次掷镖恰有一次正中靶心的概率为( )
A.0.50 B.0.45
C.0.40 D.0.35
解析:选A.两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为1,2,3,4中的之一.
它们分别是93,28,45,25,73,93,02,48,30,35共10个,因此所求的概率为=0.50.
2.通过模拟试验,产生了20组随机数:
6830 3013 7055 7430 7740 4422 7884
2604 3346 0952 6807 9706 5774 5725
6576 5929 9768 6071 9138 6754
如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,则四次射击中恰有三次击中目标的概率约为( )
A.25% B.30%
C.35% D.40%
解析:选A.表示三次击中目标分别是3013,2604,5725,6576,6754,共5组数,
而随机数总共20组,所以所求的概率近似为=25%.
3.某种心脏病手术,成功率为0.6,现准备进行3例此种手术,利用计算机取整数值随机数模拟,用0,1,2,3代表手术不成功,用4,5,6,7,8,9代表手术成功,产生20组随机数:966,907,191,924,270,832,912,468,578,582,134,370,113,573,998,397,027,488,703,725,则恰好成功1例的概率为________.
解析:设恰好成功1例的事件为A,
A所包含的基本事件为191,270,832,912,134,370,027,703共8个.
则恰好成功1例的概率为P(A)==0.4.
4.池州九华山是著名的旅游胜地.天气预报8月1日后连续四天,每天下雨的概率为0.6.现用随机模拟的方法估计四天中恰有三天下雨的概率:在0~9十个整数值中,假定0,1,2,3,4,5表示当天下雨,6,7,8,9表示当天不下雨.在随机数表中从某位置按从左到右的顺序读取如下40组四位随机数:
9533 9522 0018 7472 0018 3879 5869 3281 7890 2692
8280 8425 3990 8460 7980 2436 5987 3882 0753 8935
9635 2379 1805 9890 0735 4640 6298 8054 9720 5695
1574 8008 3216 6470 5080 6772 1642 7920 3189 0343
据此估计四天中恰有三天下雨的概率为( )
A. B. C. D.
解析:在40组四位随机数中,0~5的整数恰出现3次的四位数有16组,
故四天中恰有三天下雨的概率的估计值为=.
5.袋子中有四个小球,分别写有“幸”“福”“快”“乐”四个字,有放回地从中任取一个小球,取到“快”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“幸”“福”“快”“乐”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
13 24 12 32 43 14 24 32 31 21
23 13 32 21 24 42 13 32 21 34
据此估计,直到第二次就停止的概率为( )
A. B. C. D.
解析:选B.由随机模拟产生的随机数可知,直到第二次停止的有13,43,23,13,13共5个基本事件,故所求的概率为P==.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
专题05 频率与概率
1.频率的稳定性
一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐稳定于事件A发生的概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率fn(A)估计概率P(A).
2.频率与概率的区别与联系
名称 区别 联系
频率 本身是随机的,在试验之前无法确定,大多会随着试验次数的改变而改变.做同样次数的重复试验,得到的频率值也可能会不同 (1)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率 (2)在实际问题中,事件的概率通常情况下是未知的,常用频率估计概率
概率 是一个[0,1]中的确定值,不随试验结果的改变而改变
题型一 由频率估计随机事件的概率
1.有一个容量为66的样本,数据的分组及各组的频数如下:
[11.5,15.5) 2 ;[15.5,19.5) 4 ;[19.5,23.5) 9;
[23.5,27.5) 18 ;[27.5,31.5) 11 ;[31.5,35.5) 12;
[35.5,39.5) 7 ;[39.5,43.5] 3.
根据样本的频率分布,估计数据落在[31.5,43.5]内的概率约是( )
A. B. C. D.
2.抛掷一枚硬币100次,正面向上的次数为48次,下列说法正确的是( )
A.正面向上的概率为0.48
B.反面向上的概率是0.48
C.正面向上的频率为0.48
D.反面向上的频率是0.48
3.容量为20的样本数据,分组后的频数如下表:
分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70]
频数 2 3 4 5 4 2
则样本数据落在区间[10,40)上的频率为( )
A.0.35 B.0.45 C.0.55 D.0.65
4.给出下列三个说法,其中正确说法的个数是( )
①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;
②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是;
③随机事件发生的频率就是这个随机事件发生的概率.
A.0 B.1
C.2 D.3
5.某公司在过去几年内使用某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如表所示:
分组 [500, 900) [900, 1 100) [1 100, 1 300) [1 300, 1 500) [1 500, 1 700) [1 700, 1 900) [1 900, +∞)
频数 48 121 208 223 193 165 42
频率
①将各组的频率填入表中;
②根据上述统计结果,估计灯管使用寿命不足1 500小时的概率.
6.某射击运动员进行双向飞碟射击训练,七次训练的成绩记录如下:
射击次数n 100 120 150 100 150 160 150
击中飞碟数nA 81 95 120 81 119 127 121
(1)求各次击中飞碟的频率;(保留三位小数)
(2)该射击运动员击中飞碟的概率约为多少?
题型二 概率的含义
1.某地气象局预报说,明天本地降雨的概率为80%,则下列解释正确的是( )
A.明天本地有80%的区域降雨,20%的区域不降雨
B.明天本地有80%的时间降雨,20%的时间不降雨
C.明天本地降雨的机会是80%
D.以上说法均不正确
2.有以下说法:
①昨天没有下雨,则说明“昨天气象局的天气预报降水概率为95%”是错误的;
②“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖;
③做10次抛硬币的试验,结果3次正面朝上,因此正面朝上的概率为;
④某厂产品的次品率为2%,但该厂的50件产品中可能有2件次品.
其中错误说法的序号是________.
3.在进行n次重复试验中,事件A发生的频率为,当n很大时,事件A发生的概率P(A)与的关系是( )
A.P(A)≈ B.P(A)<
C.P(A)> D.P(A)=
4.每道选择题有四个选项,其中只有一个选项是正确的.某次数学考试共有12道选择题,有位同学说:“每个选项正确的概率是,我每道题都选择第一个选项,则一定有3道题选择结果正确.”该同学的说法( )
A.正确 B.错误
C.无法解释 D.以上均不正确
5.玲玲和倩倩下跳棋,为了确定谁先走第一步,玲玲决定拿一个飞镖射向如图所示的靶中.若射中区域所标的数字大于3,则玲玲先走第一步,否则倩倩先走第一步.这个游戏规则________(填“公平”或“不公平”).
6.商场在一周内共卖出某种品牌的皮鞋300双,商场经理为考察其中各种尺码皮鞋的销售情况,以这周内某天售出的40双皮鞋的尺码为一个样本,分为5组,已知第3组的频率为0.25,第1,2,4组的频数分别为6,7,9,若第5组表示的是尺码为40~42的皮鞋,则售出的这300双皮鞋中尺码为40~42的皮鞋约为________双.
7.某校高二年级(1)(2)班准备联合举办晚会,组织者欲使晚会气氛热烈、有趣,策划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负责表演一个节目.(1)班的文娱委员利用分别标有数字1,2,3,4,5,6,7的两个转盘(如图所示),设计了一种游戏方案:两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时(1)班代表获胜,否则(2)班代表获胜.该方案对双方是否公平?为什么?
8.下面有三种游戏规则:袋子中分别装有大小相同的球,从袋中取球.
游戏1 游戏2 游戏3
3个黑球和1个白球 1个黑球和1个白球 2个黑球和2个白球
取1个球,再取1个球 取1个球 取1个球,再取1个球
取出的两个球同色→甲胜 取出的球是黑球→甲胜 取出的两个球同色→甲胜
取出的两个球不同色→乙胜 取出的球是白球→乙胜 取出的两个球不同色→乙胜
问其中不公平的游戏是( )
A.游戏1 B.游戏1和游戏3
C.游戏2 D.游戏3
9.有人对甲、乙两名网球运动员训练中一发成功次数做了统计,结果如下表:
一发次数n 10 20 50 100 200 500
甲一发成功次数 9 17 44 92 179 450
一发成功的频率
一发次数n 10 20 50 100 200 500
乙一发成功次数 8 19 44 93 177 453
一发成功的频率
请根据以上表格中的数据回答以下问题:
(1)分别计算出两位运动员一发成功的频率,完成表格;
(2)根据(1)中计算的结果估计两位运动员一发成功的概率.
10.某商区停车场临时停车按时段收费,收费标准为每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算),现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.
(1)若甲停车1小时以上且不超过2小时的概率为,停车付费多于14元的概率为,求甲停车付费恰为6元的概率;
(2)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.
11.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中的球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6 000次.
(1)估计从袋中任意摸出一个球,恰好是红球的概率;
(2)请你估计袋中红球的个数.
题型三 随机模拟法估计概率
1.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
93 28 12 45 85 69 68 34 31 25
73 93 02 75 56 48 87 30 11 35
据此估计,该运动员两次掷镖恰有一次正中靶心的概率为( )
A.0.50 B.0.45
C.0.40 D.0.35
2.通过模拟试验,产生了20组随机数:
6830 3013 7055 7430 7740 4422 7884
2604 3346 0952 6807 9706 5774 5725
6576 5929 9768 6071 9138 6754
如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,则四次射击中恰有三次击中目标的概率约为( )
A.25% B.30%
C.35% D.40%
3.某种心脏病手术,成功率为0.6,现准备进行3例此种手术,利用计算机取整数值随机数模拟,用0,1,2,3代表手术不成功,用4,5,6,7,8,9代表手术成功,产生20组随机数:966,907,191,924,270,832,912,468,578,582,134,370,113,573,998,397,027,488,703,725,则恰好成功1例的概率为________.
4.池州九华山是著名的旅游胜地.天气预报8月1日后连续四天,每天下雨的概率为0.6.现用随机模拟的方法估计四天中恰有三天下雨的概率:在0~9十个整数值中,假定0,1,2,3,4,5表示当天下雨,6,7,8,9表示当天不下雨.在随机数表中从某位置按从左到右的顺序读取如下40组四位随机数:
9533 9522 0018 7472 0018 3879 5869 3281 7890 2692
8280 8425 3990 8460 7980 2436 5987 3882 0753 8935
9635 2379 1805 9890 0735 4640 6298 8054 9720 5695
1574 8008 3216 6470 5080 6772 1642 7920 3189 0343
据此估计四天中恰有三天下雨的概率为( )
A. B. C. D.
5.袋子中有四个小球,分别写有“幸”“福”“快”“乐”四个字,有放回地从中任取一个小球,取到“快”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“幸”“福”“快”“乐”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
13 24 12 32 43 14 24 32 31 21
23 13 32 21 24 42 13 32 21 34
据此估计,直到第二次就停止的概率为( )
A. B. C. D.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)